scispace - formally typeset
Journal ArticleDOI

Particle acceleration in relativistic laser channels

Alexander Pukhov, +2 more
- 21 Jun 1999 - 
- Vol. 6, Iss: 7, pp 2847-2854
TLDR
In this paper, the energy spectra of ions and fast electrons accelerated by a channeling laser pulse in near-critical plasma are studied using three-dimensional (3D) Particle-In-Cell simulations.
Abstract
Energy spectra of ions and fast electrons accelerated by a channeling laser pulse in near-critical plasma are studied using three-dimensional (3D) Particle-In-Cell simulations. The realistic 3D geometry of the simulations allows us to obtain not only the shape of the spectra, but also the absolute numbers of accelerated particles. It is shown that ions are accelerated by a collisionless radial expansion of the channel and have nonthermal energy spectra. The electron energy spectra instead are Boltzmann-like. The effective temperature Teff scales as I1/2. The form of electron spectra and Teff depends also on the length of the plasma channel. The major mechanism of electron acceleration in relativistic channels is identified. Electrons make transverse betatron oscillations in the self-generated static electric and magnetic fields. When the betatron frequency coincides with the laser frequency as witnessed by the relativistic electron, a resonance occurs, leading to an effective energy exchange between the l...

read more

Citations
More filters
Journal ArticleDOI

A laser-plasma accelerator producing monoenergetic electron beams

TL;DR: It is demonstrated that this randomization of electrons in phase space can be suppressed and that the quality of the electron beams can be dramatically enhanced.
Journal ArticleDOI

High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding

TL;DR: A laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) and opens the way for compact and tunable high-brightness sources of electrons and radiation.
Journal ArticleDOI

Monoenergetic beams of relativistic electrons from intense laser–plasma interactions

TL;DR: High-resolution energy measurements of the electron beams produced from intense laser–plasma interactions are reported, showing that—under particular plasma conditions—it is possible to generate beams of relativistic electrons with low divergence and a small energy spread.
Journal ArticleDOI

Femtosecond x rays from laser-plasma accelerators

TL;DR: In this paper, a unified formalism is presented for the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser accelerated electrons.
Journal ArticleDOI

Electron Acceleration by a Wake Field Forced by an Intense Ultrashort Laser Pulse

TL;DR: It is shown that a gain in maximum electron energy of up to 200 megaelectronvolts can be achieved, along with an improvement in the quality of the ultrashort electron beam in the forced laser wake field regime.
References
More filters
Journal ArticleDOI

Ignition and high gain with ultrapowerful lasers

TL;DR: In this article, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration, and a hole is bored through the capsule corona composed of ablated material, as the critical density is pushed close to the high density core of the capsule by the ponderomotive force associated with high intensity laser light.
Journal ArticleDOI

Absorption of ultra-intense laser pulses.

TL;DR: In this article, the interaction of ultra-intensemble laser pulses with a plasma was investigated and substantial absorption into heated electrons with a characteristic temperature of order the pondermotive potential was found.
Journal ArticleDOI

Not-so-resonant, resonant absorption.

TL;DR: When an intense electromagnetic wave is incident obliquely on a sharply bounded overdense plasma, strong energy absorption can be accounted for by the electrons that are dragged into the vacuum and sent back into the plasma with velocities vapprox.
Journal ArticleDOI

Self‐focusing of short intense pulses in plasmas

TL;DR: In this paper, the self-focusing of relativistically intense laser light pulses is analyzed, where the pulse length is short enough that ion inertia prevents any significant motion of ions.
Journal ArticleDOI

Ultrahigh‐Intensity Lasers: Physics of the Extreme on a Tabletop

TL;DR: In this paper, it was shown that at these intensities, the light pressure, P = I/c, is extreme, on the order of giga-to-terabars.
Related Papers (5)