scispace - formally typeset
Open AccessJournal ArticleDOI

Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science

Ankit Agrawal, +1 more
- 15 Apr 2016 - 
- Vol. 4, Iss: 5, pp 053208
TLDR
In this article, the authors look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery).
Abstract
Our ability to collect “big data” has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

read more

Citations
More filters
Journal ArticleDOI

Machine learning for molecular and materials science.

TL;DR: A future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence is envisaged.
Journal ArticleDOI

A general-purpose machine learning framework for predicting properties of inorganic materials

TL;DR: This manuscript has created a framework capable of being applied to a broad range of materials data, and demonstrates how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.
Journal ArticleDOI

Materials discovery and design using machine learning

TL;DR: In this paper, the typical mode of and basic procedures for applying machine learning in materials science are outlined and compared, and the current research status is reviewed with regard to applications of ML in material property prediction, in new materials discovery and for other purposes.
Journal ArticleDOI

From DFT to machine learning: recent approaches to materials science–a review

TL;DR: It is shown how data-driven strategies which include data mining, screening, and machine learning techniques, employ the data generated to uncover complexities and design novel materials with enhanced properties.
Journal ArticleDOI

A strategy to apply machine learning to small datasets in materials science

TL;DR: In three case studies of predicting the band gap of binary semiconductors, lattice thermal conductivity, and elastic properties of zeolites, the integration of crude estimation effectively boosted the predictive capability of machine learning models to state-of-art levels, demonstrating the generality of the proposed strategy to construct accurate ML models using small materials dataset.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Book

Applied Logistic Regression

TL;DR: Hosmer and Lemeshow as discussed by the authors provide an accessible introduction to the logistic regression model while incorporating advances of the last decade, including a variety of software packages for the analysis of data sets.
Book

Neural networks for pattern recognition

TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.
Related Papers (5)