scispace - formally typeset
Open AccessJournal ArticleDOI

Phase behavior and properties of the liquid-crystal dimer 1′′,7′′-bis(4-cyanobiphenyl-4′-yl) heptane: A twist-bend nematic liquid crystal

TLDR
It is concluded that the low-temperature mesophase of CB7CB is a new type of uniaxial nematic phase having a nonuniform director distribution composed of twist-bend deformations, and calculations using an atomistic model and the surface interaction potential with Monte Carlo sampling predict dielectric and elastic properties in the nematics phase.
Abstract
The liquid-crystal dimer 1'',7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB) exhibits two liquid-crystalline mesophases on cooling from the isotropic phase. The high-temperature phase is nematic; the identification and characterization of the other liquid-crystal phase is reported in this paper. It is concluded that the low-temperature mesophase of CB7CB is a new type of uniaxial nematic phase having a nonuniform director distribution composed of twist-bend deformations. The techniques of small-angle x-ray scattering, modulated differential scanning calorimetry, and dielectric spectroscopy have been applied to establish the nature of the nematic-nematic phase transition and the structural features of the twist-bend nematic phase. In addition, magnetic resonance studies (electron-spin resonance and (2)H nuclear magnetic resonance) have been used to investigate the orientational order and director distribution in the liquid-crystalline phases of CB7CB. The synthesis of a specifically deuterated sample of CB7CB is reported, and measurements showed a bifurcation of the quadrupolar splitting on entering the low-temperature mesophase from the high-temperature nematic phase. This splitting could be interpreted in terms of the chirality of the twist-bend structure of the director. Calculations using an atomistic model and the surface interaction potential with Monte Carlo sampling have been carried out to determine the conformational distribution and predict dielectric and elastic properties in the nematic phase. The former are in agreement with experimental measurements, while the latter are consistent with the formation of a twist-bend nematic phase.

read more

Citations
More filters
Journal ArticleDOI

Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications.

TL;DR: This Review focuses on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade, and the developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc.
Journal ArticleDOI

Nematic twist-bend phase with nanoscale modulation of molecular orientation

TL;DR: This work experimentally demonstrates a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend.
Journal ArticleDOI

Development of structural complexity by liquid-crystal self-assembly.

TL;DR: New exciting soft-matter structures distinct from the usually observed nematic, smectic, and columnar phases are presented, including multicompartment and cellular structures, periodic and quasiperiodic arrays of spheres, and new emergent properties, such as ferroelctricity and spontaneous achiral symmetry-breaking.
Journal ArticleDOI

Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers

TL;DR: Absence of a lamellar X-ray reflection at wavevector q ∼ 2π/d or its harmonics in synchrotron-based scattering experiments indicates that this periodic structure is achieved with no detectable associated modulation of the electron density, and thus has nematic rather than smectic molecular ordering.
Journal ArticleDOI

Electrically Tunable Selective Reflection of Light from Ultraviolet to Visible and Infrared by Heliconical Cholesterics

TL;DR: Electrical tuning of selective reflection of light is achieved in a very broad spectral range from ultraviolet to visible and infrared by an oblique helicoidal state of a cholesteric liquid crystal in a wide temperature range (including room temperature).
Related Papers (5)