scispace - formally typeset
Proceedings ArticleDOI

Pregel: a system for large-scale graph processing

Reads0
Chats0
TLDR
A model for processing large graphs that has been designed for efficient, scalable and fault-tolerant implementation on clusters of thousands of commodity computers, and its implied synchronicity makes reasoning about programs easier.
Abstract
Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs - in some cases billions of vertices, trillions of edges - poses challenges to their efficient processing. In this paper we present a computational model suitable for this task. Programs are expressed as a sequence of iterations, in each of which a vertex can receive messages sent in the previous iteration, send messages to other vertices, and modify its own state and that of its outgoing edges or mutate graph topology. This vertex-centric approach is flexible enough to express a broad set of algorithms. The model has been designed for efficient, scalable and fault-tolerant implementation on clusters of thousands of commodity computers, and its implied synchronicity makes reasoning about programs easier. Distribution-related details are hidden behind an abstract API. The result is a framework for processing large graphs that is expressive and easy to program.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage

TL;DR: NODOZE generates alert dependency graphs that are two orders of magnitude smaller than those generated by traditional tools without sacrificing the vital information needed for the investigation, and decreases the volume of false alarms by 84%, saving analysts’ more than 90 hours of investigation time per week.
Journal ArticleDOI

Spinning fast iterative data flows

TL;DR: This work proposes a method to integrate incremental iterations, a form of workset iterations, with parallel dataflows and presents an extension to the programming model for incremental iterations that alleviates for the lack of mutable state in dataflow and allows for exploiting the sparse computational dependencies inherent in many iterative algorithms.
Journal ArticleDOI

Scaling queries over big RDF graphs with semantic hash partitioning

TL;DR: A novel semantic hash partitioning approach is presented and a Semantic HAsh Partitioning-Enabled distributed RDF data management system is implemented, called Shape, which scales well and can process big RDF datasets more efficiently than existing approaches.
Proceedings ArticleDOI

GraphBIG: understanding graph computing in the context of industrial solutions

TL;DR: This paper characterized GraphBIG on real machines and observed extremely irregular memory patterns and significant diverse behavior across different computations, helping users understand the impact of modern graph computing on the hardware architecture and enables future architecture and system research.
References
More filters
Journal ArticleDOI

A note on two problems in connexion with graphs

TL;DR: A tree is a graph with one and only one path between every two nodes, where at least one path exists between any two nodes and the length of each branch is given.
Journal ArticleDOI

MapReduce: simplified data processing on large clusters

TL;DR: This paper presents the implementation of MapReduce, a programming model and an associated implementation for processing and generating large data sets that runs on a large cluster of commodity machines and is highly scalable.
Journal ArticleDOI

MapReduce: simplified data processing on large clusters

TL;DR: This presentation explains how the underlying runtime system automatically parallelizes the computation across large-scale clusters of machines, handles machine failures, and schedules inter-machine communication to make efficient use of the network and disks.
Journal ArticleDOI

The anatomy of a large-scale hypertextual Web search engine

TL;DR: This paper provides an in-depth description of Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and looks at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.
Journal Article

The Anatomy of a Large-Scale Hypertextual Web Search Engine.

Sergey Brin, +1 more
- 01 Jan 1998 - 
TL;DR: Google as discussed by the authors is a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems.
Related Papers (5)