scispace - formally typeset
Open AccessBook

Principles of mobile communication

TLDR
The Principles of Mobile Communication, Third Edition stresses the "fundamentals" of physical-layer wireless and mobile communications engineering that are important for the design of "any" wireless system.
Abstract
Principles of Mobile Communication, Third Edition, is an authoritative treatment of the fundamentals of mobile communications. This book stresses the "fundamentals" of physical-layer wireless and mobile communications engineering that are important for the design of "any" wireless system. This book differs from others in the field by stressing mathematical modeling and analysis. It includes many detailed derivations from first principles, extensive literature references, and provides a level of depth that is necessary for graduate students wishing to pursue research on this topic. The book's focus will benefit students taking formal instruction and practicing engineers who are likely to already have familiarity with the standards and are seeking to increase their knowledge of this important subject. Major changes from the second edition: 1. Updated discussion of wireless standards (Chapter 1). 2. Updated treatment of land mobile radio propagation to include space-time correlation functions, mobile-to-mobile (or vehicle-to-vehicle) channels, multiple-input multiple-output (MIMO) channels, improved simulation models for land mobile radio channels, and 3G cellular simulation models. 3. Updated treatment of modulation techniques and power spectrum to include Nyquist pulse shaping and linearized Gaussian minimum shift keying (LGMSK). 4. Updated treatment of antenna diversity techniques to include optimum combining, non-coherent square-law combining, and classical beamforming. 5. Updated treatment of error control coding to include space-time block codes, the BCJR algorithm, bit interleaved coded modulation, and space-time trellis codes. 6. Updated treatment of spread spectrum to include code division multiple access (CDMA) multi-user detection techniques. 7. A completely new chapter on multi-carrier techniques to include the performance of orthogonal frequency division multiplexing (OFDM) on intersymbol interference (ISI) channels, OFDM residual ISI cancellation, single-carrier frequency domain equalization (SC-FDE), orthogonal frequency division multiple access (OFDMA) and single-carrier frequency division multiple access (SC-FDMA). 8. Updated discussion of frequency planning to include OFDMA frequency planning. 9. Updated treatment of CDMA cellular systems to include hierarchical CDMA cellular architectures and capacity analysis. 10. Updated treatment of radio resource management to include CDMA soft handoff analysis. Includes numerous homework problems throughout.

read more

Content maybe subject to copyright    Report

Citations
More filters
BookDOI

Sequential Monte Carlo methods in practice

TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Journal ArticleDOI

Fading channels: information-theoretic and communications aspects

TL;DR: This paper describes the statistical models of fading channels which are frequently used in the analysis and design of communication systems, and focuses on the information theory of fading channel, by emphasizing capacity as the most important performance measure.
Journal ArticleDOI

Free-space optical communication through atmospheric turbulence channels

TL;DR: The use of ML detection in spatial diversity reception to reduce the diversity gain penalty caused by correlation between the fading at different receivers is described.
Journal ArticleDOI

A simple and general parameterization quantifying performance in fading channels

TL;DR: The proposed analysis offers a simple and unifying approach to evaluating the performance of uncoded and (possibly space-time) coded transmissions over fading channels, and the method applies to almost all digital modulation schemes, including M-ary phaseshift keying, quadrature amplitude modulation, and frequency-shift keying with coherent or noncoherent detection.
Journal ArticleDOI

Fundamental limits of spectrum-sharing in fading environments

TL;DR: This paper investigates the capacity gains offered by this dynamic spectrum sharing approach when channels vary due to fading and quantifies the relation between the secondary channel capacity and the interference inflicted on the primary user.