scispace - formally typeset
Open AccessJournal ArticleDOI

Probabilistic roadmaps for path planning in high-dimensional configuration spaces

Reads0
Chats0
TLDR
Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (/spl ap/150 MIPS), after learning for relatively short periods of time (a few dozen seconds).
Abstract
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collision-free configurations and whose edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two nodes. The method is general and easy to implement. It can be applied to virtually any type of holonomic robot. It requires selecting certain parameters (e.g., the duration of the learning phase) whose values depend on the scene, that is the robot and its workspace. But these values turn out to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (/spl ap/150 MIPS), after learning for relatively short periods of time (a few dozen seconds).

read more

Content maybe subject to copyright    Report






Citations
More filters
Proceedings Article

ITOMP: incremental trajectory optimization for real-time replanning in dynamic environments

TL;DR: This work presents a novel optimization-based algorithm for motion planning in dynamic environments that uses a stochastic trajectory optimization framework to avoid collisions and satisfy smoothness and dynamics constraints.
Journal ArticleDOI

Smooth motion planning for car-like vehicles

TL;DR: The main idea of the paper is to consider the car as a 4-D system from a kinematic point of view and as a 3-D systems from a geometric points of view of collision checking and the resulting planned motions are guaranteed to be collision-free.
Proceedings ArticleDOI

Path planning using probabilistic cell decomposition

TL;DR: Ridid body movements, maze like problems as well as path planning problems for chain-like robotic platforms have been solved successfully using the proposed algorithm.
Proceedings ArticleDOI

A combinatorial approach to planar non-colliding robot arm motion planning

TL;DR: A combinatorial approach to plan noncolliding motions for a polygonal bar-and-joint framework based on a novel class of one-degree-of-freedom mechanisms induced by pseudo triangulations of planar point sets that yields very efficient deterministic algorithms for a category of robot arm motion planning problems with many degrees of freedom.
Proceedings ArticleDOI

Incremental Task and Motion Planning: A Constraint-Based Approach

TL;DR: The Iteratively Deepened Task and Motion Planning method is probabilistically-complete and offers improved performance and generality compared to a similar, state-of-theart, probabilistic-complete planner.
References
More filters
Book

Robot Motion Planning

TL;DR: This chapter discusses the configuration space of a Rigid Object, the challenges of dealing with uncertainty, and potential field methods for solving these problems.
Journal ArticleDOI

An algorithm for planning collision-free paths among polyhedral obstacles

TL;DR: A collision avoidance algorithm for planning a safe path for a polyhedral object moving among known polyhedral objects that transforms the obstacles so that they represent the locus of forbidden positions for an arbitrary reference point on the moving object.
Journal ArticleDOI

Spatial Planning: A Configuration Space Approach

TL;DR: In this article, the authors propose an approach based on characterizing the position and orientation of an object as a single point in a configuration space, in which each coordinate represents a degree of freedom in the position or orientation of the object.
Journal ArticleDOI

Exact robot navigation using artificial potential functions

TL;DR: A methodology for exact robot motion planning and control that unifies the purely kinematic path planning problem with the lower level feedback controller design is presented.
Book

Spatial planning: a configuration space approach

TL;DR: Algorithms for computing constraints on the position of an object due to the presence of ther objects, which arises in applications that require choosing how to arrange or how to move objects without collisions are presented.