scispace - formally typeset
Open AccessJournal ArticleDOI

Probabilistic roadmaps for path planning in high-dimensional configuration spaces

Reads0
Chats0
TLDR
Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (/spl ap/150 MIPS), after learning for relatively short periods of time (a few dozen seconds).
Abstract
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collision-free configurations and whose edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two nodes. The method is general and easy to implement. It can be applied to virtually any type of holonomic robot. It requires selecting certain parameters (e.g., the duration of the learning phase) whose values depend on the scene, that is the robot and its workspace. But these values turn out to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (/spl ap/150 MIPS), after learning for relatively short periods of time (a few dozen seconds).

read more

Content maybe subject to copyright    Report






Citations
More filters
Journal ArticleDOI

A Survey on Aerial Swarm Robotics

TL;DR: The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping, and dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing.
Book ChapterDOI

A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking

TL;DR: Experimental results show that this combination of techniques drastically reduces planning times, making it possible to handle difficult problems, including multi-robot problems in geometrically complex environments.
Journal ArticleDOI

The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance

TL;DR: It is shown that planning in belief space can be performed efficiently for linear Gaussian systems by using a factored form of the covariance matrix, allowing several prediction and measurement steps to be combined into a single linear transfer function, leading to very efficient posterior belief prediction during planning.
Journal ArticleDOI

Elastic Strips: A Framework for Motion Generation in Human Environments

TL;DR: The elastic strip framework presented in this paper enables the execution of a previously planned motion in a dynamic environment for robots with many degrees of freedom, and encompasses methods to suspend task behavior when its execution becomes inconsistent with other constraints imposed on the motion.
Journal ArticleDOI

Task Space Regions: A framework for pose-constrained manipulation planning

TL;DR: A manipulation planning framework that allows robots to plan in the presence of constraints on end-effector pose, as well as other common constraints, and proves probabilistic completeness for the planning approach is presented.
References
More filters
Book

Robot Motion Planning

TL;DR: This chapter discusses the configuration space of a Rigid Object, the challenges of dealing with uncertainty, and potential field methods for solving these problems.
Journal ArticleDOI

An algorithm for planning collision-free paths among polyhedral obstacles

TL;DR: A collision avoidance algorithm for planning a safe path for a polyhedral object moving among known polyhedral objects that transforms the obstacles so that they represent the locus of forbidden positions for an arbitrary reference point on the moving object.
Journal ArticleDOI

Spatial Planning: A Configuration Space Approach

TL;DR: In this article, the authors propose an approach based on characterizing the position and orientation of an object as a single point in a configuration space, in which each coordinate represents a degree of freedom in the position or orientation of the object.
Journal ArticleDOI

Exact robot navigation using artificial potential functions

TL;DR: A methodology for exact robot motion planning and control that unifies the purely kinematic path planning problem with the lower level feedback controller design is presented.
Book

Spatial planning: a configuration space approach

TL;DR: Algorithms for computing constraints on the position of an object due to the presence of ther objects, which arises in applications that require choosing how to arrange or how to move objects without collisions are presented.