scispace - formally typeset
Journal ArticleDOI

Production of electricity during wastewater treatment using a single chamber microbial fuel cell.

Reads0
Chats0
TLDR
It is demonstrated here that it is also possible to produce electricity in a MFC from domestic wastewater, while at the same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD), which may represent a completely new approach to wastewater treatment.
Abstract
Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while atthe same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD). Tests were conducted using a single chamber microbial fuel cell (SCMFC) containing eight graphite electrodes (anodes) and a single air cathode. The system was operated under continuous flow conditions with primary clarifier effluent obtained from a local wastewater treatment plant. The prototype SCMFC reactor generated electrical power (maximum of 26 mW m(-2)) while removing up to 80% of the COD of the wastewater. Power output was proportional to the hydraulic retention time over a range of 3-33 h and to the influent wastewater strength over a range of 50-220 mg/L of COD. Current generation was controlled primarily by the efficiency of the cathode. Optimal cathode performance was obtained by allowing passive air flow rather than forced air flow (4.5-5.5 L/min). The Coulombic efficiency of the system, based on COD removal and current generation, was < 12% indicating a substantial fraction of the organic matter was lost without current generation. Bioreactors based on power generation in MFCs may represent a completely new approach to wastewater treatment. If power generation in these systems can be increased, MFC technology may provide a new method to offset wastewater treatment plant operating costs, making advanced wastewater treatment more affordable for both developing and industrialized nations.

read more

Citations
More filters
Journal ArticleDOI

Microbial Fuel Cells: Methodology and Technology†

TL;DR: A review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results are provided.
Journal ArticleDOI

Microbial fuel cells: novel biotechnology for energy generation

TL;DR: How bacteria use an anode as an electron acceptor and to what extent they generate electrical output is discussed and the MFC technology is evaluated relative to current alternatives for energy generation.
Journal ArticleDOI

Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.

TL;DR: An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2.
Journal ArticleDOI

A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.

TL;DR: A critical review on the recent advances in MFC research with emphases on MFC configurations and performances is presented.
Journal ArticleDOI

Microbial electrosynthesis — revisiting the electrical route for microbial production

TL;DR: This Review addresses the principles, challenges and opportunities of microbial electrosynthesis, an exciting new discipline at the nexus of microbiology and electrochemistry.
References
More filters
Journal ArticleDOI

Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells

TL;DR: A novel microorganism is reported on, Rhodoferax ferrireducens, that can oxidize glucose to CO2 and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator, which results in stable, long-term power production.
Journal ArticleDOI

A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency.

TL;DR: This research indicates that microbial electricity generation offers perspectives for optimization in relation to glucose dosage and five fold higher power output than reported thus far.
Journal ArticleDOI

Harvesting Energy from the Marine Sediment−Water Interface

TL;DR: In this paper, the authors proposed that the sediment/anode−seawater/cathode configuration constitutes a microbial fuel cell in which power results from the net oxidation of sediment organic matter by dissolved seawater oxygen.
BookDOI

Environmental Microbe-Metal Interactions

TL;DR: The role of Siderophores in Iron Oxide Dissolution was discussed in this article, along with the role of Fungi and Environmental Mobility Metals and Metalloids in Bacterial Surface-Mediated Mineral Formation.
Journal ArticleDOI

Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water.

TL;DR: Treatment performance was very stable and on a high level and the COD was reduced by 95%.
Related Papers (5)