scispace - formally typeset
Open AccessJournal ArticleDOI

Quantum Rabi oscillation: A direct test of field quantization in a cavity.

TLDR
This investigation of the excited levels of the atom-cavity system reveals nonlinear quantum features at extremely low field strengths.
Abstract
We have observed the Rabi oscillation of circular Rydberg atoms in the vacuum and in small coherent fields stored in a high Q cavity. The signal exhibits discrete Fourier components at frequencies proportional to the square root of successive integers. This provides direct evidence of field quantization in the cavity. The weights of the Fourier components yield the photon number distribution in the field. This investigation of the excited levels of the atom-cavity system reveals nonlinear quantum features at extremely low field strengths.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Many-Body Physics with Ultracold Gases

TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Journal ArticleDOI

Theory of Bose-Einstein condensation in trapped gases

TL;DR: In this article, the authors reviewed the Bose-Einstein condensation of dilute gases in traps from a theoretical perspective and provided a framework to understand the main features of the condensation and role of interactions between particles.
Journal ArticleDOI

Quantum dynamics of single trapped ions

TL;DR: Theoretical and experimental work on radio-frequency (Paul) traps is reviewed in this paper, with a focus on ions trapped in radiofrequency traps, which are ideal for quantum-optical and quantum-dynamical studies under well controlled conditions.
Journal ArticleDOI

Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity

TL;DR: The experimental realization of a strongly coupled system in the solid state is reported: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanoc Cavity and the quantum dot.
Journal ArticleDOI

Quantum nature of a strongly coupled single quantum dot–cavity system

TL;DR: Observations unequivocally show that quantum information tasks are achievable in solid-state cavity QED by observing quantum correlations in photoluminescence from a photonic crystal nanocavity interacting with one, and only one, quantum dot located precisely at the cavity electric field maximum.
Related Papers (5)