scispace - formally typeset
Open AccessJournal ArticleDOI

Relativistic theory of wave‐particle resonant diffusion with application to electron acceleration in the magnetosphere

Danny Summers, +2 more
- 01 Sep 1998 - 
- Vol. 103, pp 20487-20500
TLDR
In this paper, a model was proposed to account for the observed variations in the flux and pitch angle distribution of relativistic electrons during geomagnetic storms by combining pitch angle scattering by intense EMIC waves and energy diffusion during cyclotron resonant interaction with whistler mode chorus outside the plasmasphere.
Abstract
Resonant diffusion curves for electron cyclotron resonance with field-aligned electromagnetic R mode and L mode electromagnetic ion cyclotron (EMIC) waves are constructed using a fully relativistic treatment. Analytical solutions are derived for the case of a single-ion plasma, and a numerical scheme is developed for the more realistic case of a multi-ion plasma. Diffusion curves are presented, for plasma parameters representative of the Earth's magnetosphere at locations both inside and outside the plasmapause. The results obtained indicate minimal electron energy change along the diffusion curves for resonant interaction with L mode waves. Intense storm time EMIC waves are therefore ineffective for electron stochastic acceleration, although these waves could induce rapid pitch angle scattering for ≳ 1 MeV electrons near the duskside plasmapause. In contrast, significant energy change can occur along the diffusion curves for interaction between resonant electrons and whistler (R mode) waves. The energy change is most pronounced in regions of low plasma density. This suggests that whistler mode waves could provide a viable mechanism for electron acceleration from energies near 100 keV to above 1 MeV in the region outside the plasmapause during the recovery phase of geomagnetic storms. A model is proposed to account for the observed variations in the flux and pitch angle distribution of relativistic electrons during geomagnetic storms by combining pitch angle scattering by intense EMIC waves and energy diffusion during cyclotron resonant interaction with whistler mode chorus outside the plasmasphere.

read more

Citations
More filters
Journal ArticleDOI

Science Objectives and Rationale for the Radiation Belt Storm Probes Mission

TL;DR: The NASA Radiation Belt Storm Probes (RBSP) mission as discussed by the authors uses two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10∘).
Journal ArticleDOI

Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms

TL;DR: In this article, the authors examined the mechanism of electron pitch-angle diffusion by gyroresonant interaction with EMIC waves as a cause of relativistic electron precipitation loss from the outer radiation belt.
Journal ArticleDOI

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

TL;DR: High-resolution electron observations obtained during the 9 October storm are reported and chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase, and detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth's outer radiation belt.
Journal ArticleDOI

Timescale for radiation belt electron acceleration by whistler mode chorus waves

TL;DR: In this paper, the authors present CRRES data on the spatial distribution of chorus emissions during active conditions and calculate the pitch angle and energy diffusion rates in three magnetic local time (MLT) sectors and obtain a timescale for acceleration.
References
More filters
Book

The theory of plasma waves

T. H. Stix
Journal ArticleDOI

A theory of the terrestrial kilometric radiation

TL;DR: In this paper, it was found that reflected electrons can result in the amplification of electromagnetic waves via a relativistic normal cyclotron resonance, which may explain the recently discovered terrestrial kilometric radiation.
Journal ArticleDOI

Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field

TL;DR: In this paper, the quasi-linear velocity space diffusion is considered for waves of any oscillation branch propagating at an arbitrary angle to a uniform magnetic field in a spatially uniform plasma, and the space-averaged distribution function is assumed to change slowly compared to a gyroperiod and characteristic times of the wave motion.
Related Papers (5)