scispace - formally typeset
Proceedings ArticleDOI

Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography

Paul Debevec
- Vol. 1998, pp 189-198
TLDR
A method that uses measured scene radiance and global illumination in order to add new objects to light-based models with correct lighting and the relevance of the technique to recovering surface reflectance properties in uncontrolled lighting situations is discussed.
Abstract
We present a method that uses measured scene radiance and global illumination in order to add new objects to light-based models with correct lighting. The method uses a high dynamic range image-based model of the scene, rather than synthetic light sources, to illuminate the new objects. To compute the illumination, the scene is considered as three components: the distant scene, the local scene, and the synthetic objects. The distant scene is assumed to be photometrically unaffected by the objects, obviating the need for reflectance model information. The local scene is endowed with estimated reflectance model information so that it can catch shadows and receive reflected light from the new objects. Renderings are created with a standard global illumination method by simulating the interaction of light amongst the three components. A differential rendering technique allows for good results to be obtained when only an estimate of the local scene reflectance properties is known.We apply the general method to the problem of rendering synthetic objects into real scenes. The light-based model is constructed from an approximate geometric model of the scene and by using a light probe to measure the incident illumination at the location of the synthetic objects. The global illumination solution is then composited into a photograph of the scene using the differential rendering technique. We conclude by discussing the relevance of the technique to recovering surface reflectance properties in uncontrolled lighting situations. Applications of the method include visual effects, interior design, and architectural visualization.

read more

Citations
More filters
Journal ArticleDOI

Recent advances in augmented reality

TL;DR: This work refers one to the original survey for descriptions of potential applications, summaries of AR system characteristics, and an introduction to the crucial problem of registration, including sources of registration error and error-reduction strategies.
Proceedings ArticleDOI

Gradient domain high dynamic range compression

TL;DR: The results demonstrate that the method is capable of drastic dynamic range compression, while preserving fine details and avoiding common artifacts, such as halos, gradient reversals, or loss of local contrast.
Journal ArticleDOI

Object Perception as Bayesian Inference

TL;DR: This work has shown how complexity may be managed and ambiguity resolved through the task-dependent, probabilistic integration of prior object knowledge with image features.
Proceedings ArticleDOI

Acquiring the reflectance field of a human face

TL;DR: A method to acquire the reflectance field of a human face and use these measurements to render the face under arbitrary changes in lighting and viewpoint and demonstrates the technique with synthetic renderings of a person's face under novel illumination and viewpoints.
Proceedings ArticleDOI

Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments

TL;DR: A new, real-time method for rendering diffuse and glossy objects in low-frequency lighting environments that captures soft shadows, interreflections, and caustics and introduces functions for radiance transfer from a dynamic lighting environment through a preprocessed object to neighboring points in space.
References
More filters
Proceedings ArticleDOI

Light field rendering

TL;DR: This paper describes a sampled representation for light fields that allows for both efficient creation and display of inward and outward looking views, and describes a compression system that is able to compress the light fields generated by more than a factor of 100:1 with very little loss of fidelity.
Proceedings ArticleDOI

A volumetric method for building complex models from range images

TL;DR: This paper presents a volumetric method for integrating range images that is able to integrate a large number of range images yielding seamless, high-detail models of up to 2.6 million triangles.
Proceedings ArticleDOI

The lumigraph

TL;DR: A new method for capturing the complete appearance of both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions.
Proceedings ArticleDOI

Recovering high dynamic range radiance maps from photographs

TL;DR: This work discusses how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing, and demonstrates a few applications of having high dynamic range radiance maps.
Journal ArticleDOI

Object modelling by registration of multiple range images

TL;DR: A new approach is proposed which works on range data directly and registers successive views with enough overlapping area to get an accurate transformation between views and is performed by minimizing a functional which does not require point-to-point matches.