scispace - formally typeset
Open AccessPosted Content

Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions

Reads0
Chats0
TLDR
This work describes quantum many--body systems in terms of projected entangled--pair states, which naturally extend matrix product states to two and more dimensions, and uses this result to build powerful numerical simulation techniques to describe the ground state, finite temperature, and evolution of spin systems in two and higher dimensions.
Abstract
We describe quantum many--body systems in terms of projected entangled--pair states, which naturally extend matrix product states to two and more dimensions. We present an algorithm to determine correlation functions in an efficient way. We use this result to build powerful numerical simulation techniques to describe the ground state, finite temperature, and evolution of spin systems in two and higher dimensions.

read more

Citations
More filters
Journal ArticleDOI

The density-matrix renormalization group in the age of matrix product states

TL;DR: This paper gives a detailed exposition of current DMRG thinking in the MPS language in order to make the advisable implementation of the family of D MRG algorithms in exclusively MPS terms transparent.
Journal ArticleDOI

The density-matrix renormalization group

TL;DR: The density-matrix renormalization group (DMRG) as mentioned in this paper is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription.
Journal ArticleDOI

Quantum Simulation

TL;DR: The main theoretical and experimental aspects of quantum simulation have been discussed in this article, and some of the challenges and promises of this fast-growing field have also been highlighted in this review.
Journal ArticleDOI

Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems

TL;DR: In this paper, the authors review recent developments in the theoretical understanding and numerical implementation of variational renormalization group methods using matrix product states and projected entangled pair states, and present a survey of the literature.
Journal ArticleDOI

Quantum computation and quantum-state engineering driven by dissipation

TL;DR: In this article, the authors show that dissipation can be used to engineer a large variety of strongly correlated states in steady state, including all stabilizer codes, matrix product states, and their generalization to higher dimensions.
Related Papers (5)