scispace - formally typeset
Open AccessJournal ArticleDOI

Representational Similarity Analysis – Connecting the Branches of Systems Neuroscience

Reads0
Chats0
TLDR
A new experimental and data-analytical framework called representational similarity analysis (RSA) is proposed, in which multi-channel measures of neural activity are quantitatively related to each other and to computational theory and behavior by comparing RDMs.
Abstract
A fundamental challenge for systems neuroscience is to quantitatively relate its three major branches of research: brain-activity measurement, behavioral measurement, and computational modeling. Using measured brain-activity patterns to evaluate computational network models is complicated by the need to define the correspondency between the units of the model and the channels of the brain-activity data, e.g. single-cell recordings or voxels from functional magnetic resonance imaging (fMRI). Similar correspondency problems complicate relating activity patterns between different modalities of brain-activity measurement, and between subjects and species. In order to bridge these divides, we suggest abstracting from the activity patterns themselves and computing representational dissimilarity matrices, which characterize the information carried by a given representation in a brain or model. We propose a new experimental and data-analytical framework called representational similarity analysis (RSA), in which multi-channel measures of neural activity are quantitatively related to each other and to computational theory and behavior by comparing representational dissimilarity matrices. We demonstrate RSA by relating representations of visual objects as measured with fMRI to computational models spanning a wide range of complexities. We argue that these ideas, which have deep roots in psychology and neuroscience, will allow the integrated quantitative analysis of data from all three branches, thus contributing to a more unified systems neuroscience.

read more

Citations
More filters
Journal ArticleDOI

Engaged listeners: shared neural processing of powerful political speeches

TL;DR: Audience-wide functional brain dynamics during listening to speeches of varying rhetorical quality are assessed, suggesting that powerful speeches are more potent in taking control of the listeners' brain responses during powerful speeches.
Journal ArticleDOI

Is the Sensorimotor Cortex Relevant for Speech Perception and Understanding? An Integrative Review.

TL;DR: It is concluded that frontoparietal cortices, including ventral motor and somatosensory areas, reflect phonological information during speech perception and exert a causal influence on language understanding.
Journal ArticleDOI

Task Context Overrules Object- and Category-Related Representational Content in the Human Parietal Cortex

TL;DR: It is emphasized that human parietal cortex does not preferentially represent particular object properties irrespective of task, but together with frontal areas is part of a multiple‐demand and content‐rich cortical network representing task‐relevant object properties.
Journal ArticleDOI

Distributed neural representations of phonological features during speech perception.

TL;DR: Functional magnetic resonance imaging and multivoxel pattern analysis are used to investigate the distributed patterns of activation that are associated with the categorical and perceptual similarity structure of 16 consonant exemplars in the English language used in Miller and Nicely's (1955) classic study of acoustic confusability.
Journal ArticleDOI

Crossmodal and action-specific: neuroimaging the human mirror neuron system

TL;DR: Neuroimaging, particularly through application of MVPA, has the potential to reveal the properties of the HMNS in further detail, which could challenge prevailing views about its neuroanatomical organisation.
References
More filters
Journal ArticleDOI

Nonlinear dimensionality reduction by locally linear embedding.

TL;DR: Locally linear embedding (LLE) is introduced, an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs that learns the global structure of nonlinear manifolds.
Journal ArticleDOI

A global geometric framework for nonlinear dimensionality reduction.

TL;DR: An approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set and efficiently computes a globally optimal solution, and is guaranteed to converge asymptotically to the true structure.
Journal ArticleDOI

Statistical parametric maps in functional imaging: A general linear approach

TL;DR: In this paper, the authors present a general approach that accommodates most forms of experimental layout and ensuing analysis (designed experiments with fixed effects for factors, covariates and interaction of factors).
Related Papers (5)