scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers in Human Neuroscience in 2016"


Journal ArticleDOI
TL;DR: This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients to achieve the maximal motor function recovery for each patient.
Abstract: Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients’ mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

552 citations


Journal ArticleDOI
TL;DR: A new open-source toolbox for performing temporal response functions describing a mapping between stimulus and response in both directions is introduced and the importance of regularizing the analysis is explained and how this regularization can be optimized for a particular dataset.
Abstract: Understanding how brains process sensory signals in natural environments is one of the key goals of 21st century neuroscience. While brain imaging and invasive electrophysiology will play key roles in this endeavor, there is also an important role to be played by noninvasive, macroscopic techniques with high temporal resolution such as electro- and magnetoencephalography. But challenges exist in determining how best to analyze such complex, time-varying neural responses to complex, time-varying and multivariate natural sensory stimuli. There has been a long history of applying system identification techniques to relate the firing activity of neurons to complex sensory stimuli and such techniques are now seeing increased application to EEG and MEG data. One particular example involves fitting a filter – often referred to as a temporal response function – that describes a mapping between some feature(s) of a sensory stimulus and the neural response. Here, we first briefly review the history of these system identification approaches and describe a specific technique for deriving temporal response functions known as regularized linear regression. We then introduce a new open-source toolbox for performing this analysis. We describe how it can be used to derive (multivariate) temporal response functions describing a mapping between stimulus and response in both directions. We also explain the importance of regularizing the analysis and how this regularization can be optimized for a particular dataset. We then outline specifically how the toolbox implements these analyses and provide several examples of the types of results that the toolbox can produce. Finally, we consider some of the limitations of the toolbox and opportunities for future development and application.

437 citations


Journal ArticleDOI
TL;DR: The case of a 17-year-old right-handed Belgian boy with developmental FAS and comorbid developmental apraxia of speech and a significant hypoperfusion in the prefrontal and medial frontal regions are presented.
Abstract: This paper presents the case of a 17-year-old right-handed Belgian boy with developmental FAS and comorbid developmental apraxia of speech (DAS). Extensive neuropsychological and neurolinguistic investigations demonstrated a normal IQ but impaired planning (visuo-constructional dyspraxia). A Tc-99m-ECD SPECT revealed a significant hypoperfusion in the prefrontal and medial frontal regions, as well as in the lateral temporal regions. Hypoperfusion in the right cerebellum almost reached significance. It is hypothesized that these clinical findings support the view that FAS and DAS are related phenomena following impairment of the cerebro-cerebellar network.

382 citations


Journal ArticleDOI
TL;DR: A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease.
Abstract: Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease.

368 citations


Journal ArticleDOI
TL;DR: A hierarchical Bayesian framework for interoception, homeostatic/allostatic control, and meta-cognition is outlined that connects fatigue and depression to the experience of chronic dyshomeostasis and proposes that the performance of interoceptive- allostatic circuitry is monitored by a metacognitive layer that updates beliefs about the brain's capacity to successfully regulate bodily states.
Abstract: This paper outlines a hierarchical Bayesian framework for interoception, homeostatic/allostatic control, and meta-cognition that connects fatigue and depression to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the inversion of a generative model of viscerosensory inputs allows for a formal definition of dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently, low evidence for the brain's model of bodily states) and allostasis (as a change in prior beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically, we propose that the performance of interoceptive-allostatic circuitry is monitored by a metacognitive layer that updates beliefs about the brain's capacity to successfully regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression can be understood as sequential responses to the interoceptive experience of dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy. While fatigue might represent an early response with adaptive value (cf. sickness behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of low self-efficacy and lack of control (cf. learned helplessness), resulting in depression. This perspective implies alternative pathophysiological mechanisms that are reflected by differential abnormalities in the effective connectivity of circuits for interoception and allostasis. We discuss suitably extended models of effective connectivity that could distinguish these connectivity patterns in individual patients and may help inform differential diagnosis of fatigue and depression in the future.

259 citations


Journal ArticleDOI
TL;DR: While the enhanced power in the individual alpha band did not return back to pre-stimulation baseline in the stimulation group, the difference between stimulation and sham diminishes after 70 min due to a natural alpha increase of the sham group.
Abstract: Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to increase power of endogenous brain oscillations in the range of the stimulated frequency after stimulation. In the alpha band this aftereffect has been shown to persist for at least 30 min. However, in most experiments the aftereffect exceeded the duration of the measurement. Thus, it remains unclear how the effect develops beyond these 30 min and when it decays. The current study aimed to extend existing findings by monitoring the physiological aftereffect of tACS in the alpha range for an extended period of 90 min post-stimulation. To this end participants received either 20 min of tACS or sham stimulation with intensities below their individual sensation threshold at the individual alpha frequency (IAF). Electroencephalogram (EEG) was acquired during 3 min before and 90 min after stimulation. Subjects performed a visual vigilance task during the whole measurement. While the enhanced power in the individual alpha band did not return back to pre-stimulation baseline in the stimulation group, the difference between stimulation and sham diminishes after 70 min due to a natural alpha increase of the sham group.

256 citations


Journal ArticleDOI
TL;DR: The results show that implicit bias decreased more for those with the Black virtual body than the White, and there was also some evidence of a general decrease in bias independently of body type for which possible explanations are put forward.
Abstract: Virtual reality can be used to visually substitute a person’s body by a life-sized virtual one. Such embodiment results in a perceptual illusion of body ownership over the virtual body (VB). Previous research has shown that the form of the VB can influence implicit attitudes. In particular, embodying White people in a Black virtual body is associated with an immediate decrease in their implicit racial bias against Black people. We tested whether the reduction in implicit bias lasts for at least one week and whether it is enhanced by multiple exposures. Two experiments were carried out with a total of 90 female participants where the virtual body was either Black or White. Participants were required to follow a virtual Tai Chi teacher who was either Asian or European Caucasian. Each participant had 1, 2 or 3 exposures separated by days. Implicit racial bias was measured one week before their first exposure and one week after their last. The results show that implicit bias decreased more for those with the Black virtual body than the White. There was also some evidence of a general decrease in bias independently of body type for which possible explanations are put forward.

241 citations


Journal ArticleDOI
TL;DR: There may be an emerging role for ketamine in treatment of refractory depression and Post-Traumatic Stress Disorder, and the history of ketamine, its pharmacology, putative mechanisms of action and current clinical applications are reviewed.
Abstract: Ketamine was introduced into clinical practice in the 1960s and continues to be both clinically useful and scientifically fascinating. With considerably diverse molecular targets and neurophysiological properties, ketamine’s effects on the central nervous system remain incompletely understood. Investigators have leveraged the unique characteristics of ketamine to explore the invariant, fundamental mechanisms of anesthetic action. Emerging evidence indicates that ketamine-mediated anesthesia may occur via disruption of corticocortical information transfer in a frontal-to-parietal (“top down”) distribution. This proposed mechanism of general anesthesia has since been demonstrated with anesthetics in other pharmacological classes as well. Ketamine remains invaluable to the fields of anesthesiology and critical care medicine, in large part due to its ability to maintain cardiorespiratory stability while providing effective sedation and analgesia. Furthermore, there may be an emerging role for ketamine in treatment of refractory depression and post-traumatic stress disorder. In this article, we review the history of ketamine, its pharmacology, putative mechanisms of action, and current clinical applications.

237 citations


Journal ArticleDOI
TL;DR: The Ego-Dissolution Inventory (EDI) is validated, demonstrating the psychometric structure, internal consistency and construct validity of the EDI and demonstrating the close relationship between ego-dissolution and the psychedelic experience.
Abstract: Aims: The experience of a compromised sense of ‘self’, termed ego-dissolution, is a key feature of the psychedelic experience and acute psychosis. This study aimed to validate the Ego-Dissolution Inventory (EDI), a new 8-item self-report scale designed to measure ego-dissolution. Additionally, we aimed to investigate the specificity of the relationship between psychedelics and ego-dissolution. Method: Sixteen items relating to altered ego-consciousness were included in an internet questionnaire; 8 relating to the experience of ego-dissolution (comprising the EDI), and 8 relating to the antithetical experience of increased self-assuredness. Items were rated using a visual analogue scale. Participants answered the questionnaire for experiences with classical psychedelic drugs, cocaine or alcohol. They also answered the 7 questions from the Mystical Experiences Questionnaire (MEQ) relating to the experience of unity with one’s surroundings. Results: 691 participants completed the questionnaire, providing data for 1828 drug experiences (1043 psychedelics. 377 cocaine. 408 alcohol). Exploratory factor analysis demonstrated that the 8 EDI items loaded exclusively onto a single common factor, which was orthogonal to a second factor comprised of the items relating to increased self-assuredness (rho= -.110), demonstrating discriminant validity. The EDI correlated strongly with our measure of unitive experience (rho = .735), demonstrating convergent validity. EDI internal consistency was excellent (Cronbach’s alpha 0.93). Three analyses confirmed the specificity of ego-dissolution for experiences occasioned by psychedelic drugs. Firstly, EDI score correlated with drug-dose for psychedelic drugs (rho=.371), but not for cocaine (rho=.115) or alcohol (rho=-0.055). Secondly, the linear regression line relating the subjective intensity of the experience to EDI was significantly steeper for psychedelics (unstandardized B coefficient= 0.701) compared with cocaine (0.135) or alcohol (0.144). Finally, a binary support vector machine classifier identified experiences occasioned by psychedelic drugs vs. cocaine or alcohol with over 85% accuracy using ratings of ego-dissolution and ego-inflation alone. Conclusions: Our results demonstrate the psychometric structure, internal consistency and construct validity of the EDI. Moreover, we demonstrate the close relationship between ego-dissolution and the psychedelic experience. The EDI will facilitate the study of the neuronal correlates of ego-dissolution, which is relevant for psychedelic-assisted psychotherapy and our understanding of psychosis.

214 citations


Journal ArticleDOI
TL;DR: The present review uses a more macroscopic lens to identify potential brain and behavioral/socioemotional mediators of the association between PA and cognitive function and discusses mechanisms at multiple levels of analysis to stimulate the field to examine both brain and Behavioral mediators.
Abstract: Physical activity (PA) is known to maintain and improve neurocognitive health. However, there is still a poor understanding of the mechanisms by which PA exerts its effects on the brain and cognition in humans. Many of the most widely discussed mechanisms of PA are molecular and cellular and arise from animal models. While information about basic cellular and molecular mechanisms is an important foundation from which to build our understanding of how PA promotes cognitive health in humans, there are other pathways that could play a role in this relationship. For example, PA-induced changes to cellular and molecular pathways likely initiate changes to macroscopic properties of the brain and/or to behavior that in turn influence cognition. The present review uses a more macroscopic lens to identify potential brain and behavioral/socioemotional mediators of the association between PA and cognitive function. We first summarize what is known regarding cellular and molecular mechanisms, and then devote the remainder of the review to discussing evidence for brain systems and behavioral/socioemotional pathways by which PA influences cognition. It is our hope that discussing mechanisms at multiple levels of analysis will stimulate the field to examine both brain and behavioral mediators. Doing so is important, as it could lead to a more complete characterization of the processes by which PA influences neurocognitive function, as well as a greater variety of targets for modifying neurocognitive function in clinical contexts.

193 citations


Journal ArticleDOI
TL;DR: These findings provide unequivocal evidence that visual rhythmic stimulation entrains brain oscillations, thus validating the approach of rhythmicstimulation as a manipulation of brain oscillation.
Abstract: The functional relevance of brain oscillations in the alpha frequency range (8-13 Hz) has been repeatedly investigated through the use of rhythmic visual stimulation. The underlying mechanism of the steady-state visual evoked potential (SSVEP) measured in EEG during rhythmic stimulation, however, is not known. There are two hypotheses on the origin of SSVEPs: entrainment of brain oscillations and superposition of event-related responses (ERPs). The entrainment but not the superposition hypothesis justifies rhythmic visual stimulation as a means to manipulate brain oscillations, because superposition assumes a linear summation of single responses, independent from ongoing brain oscillations. Here, we stimulated participants with a rhythmic flickering light of different frequencies and intensities. We measured entrainment by comparing the phase coupling of brain oscillations stimulated by rhythmic visual flicker with the oscillations induced by arrhythmic jittered stimulation, varying the time, stimulation frequency, and intensity conditions. In line with a theoretical concept of entrainment (the so called Arnold tongue), we found the phase coupling to be more pronounced with increasing stimulation intensity as well as at stimulation frequencies closer to each participant's intrinsic frequency. Only inside the Arnold tongue did the conditions significantly differ from the jittered stimulation. Furthermore, even in a single sequence of an SSVEP, we found non-linear features (intermittency of phase locking) that contradict the linear summation of single responses, as assumed by the superposition hypothesis. Our findings provide unequivocal evidence that visual rhythmic stimulation entrains brain oscillations, thus validating the approach of rhythmic stimulation as a manipulation of brain oscillations.

Journal ArticleDOI
TL;DR: This research collected multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to explore neuro-physiological correlates of drivers' mental states and proposed a novel driving condition level (DCL) that distinguished clearly between the features of well-rested and sleep-deprived conditions.
Abstract: Investigations of the neuro-physiological correlates of mental loads, or states, have attracted significant attention recently, as it is particularly important to evaluate mental fatigue in drivers operating a motor vehicle. In this research, we collected multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to explore neuro-physiological correlates of drivers' mental states. Each subject performed simulated driving under two different conditions (well-rested and sleep-deprived) on different days. During the experiment, we used 68 electrodes for EEG/ECG/EOG and 8 channels for fNIRS recordings. We extracted the prominent features of each modality to distinguish between the well-rested and sleep-deprived conditions, and all multimodal features, except EOG, were combined to quantify mental fatigue during driving. Finally, a novel driving condition level (DCL) was proposed that distinguished clearly between the features of well-rested and sleep-deprived conditions. This proposed DCL measure may be applicable to real-time monitoring of the mental states of vehicle drivers. Further, the combination of methods based on each classifier yielded substantial improvements in the classification accuracy between these two conditions.

Journal ArticleDOI
TL;DR: FNIRS hyperscanning is used to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™, suggesting that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction.
Abstract: Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and non-cooperative interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8, during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialogue section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal region (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research.

Journal ArticleDOI
TL;DR: As indicated by quite some inconsistency in literature on the efficacy of the stimulation, the field of tDCS research is clearly struck by the replication crisis that the authors also find in psychology and neurosciences in general.
Abstract: Cheap, easy to apply, well-tolerable, with the potential of altering cortical excitability, and for testing causalities—these are attributes that have made transcranial direct current stimulation (tDCS) a highly popular research tool in cognitive neuroscience. Since its reintroduction over 15 years ago by Nitsche and Paulus (2000), the number of publications reporting tDCS results has risen exponentially (a Scopus® literature search indicates over 500 such journal articles published in 2015 alone). Recently however, the efficacy of tDCS to alter cognitive performance has been called into question, in particular among healthy participants, but also in certain clinical samples (Horvath et al., 2015; Hill et al., 2016; Mancuso et al., 2016). A number of empirical studies reported not having been able to detect any facilitatory effects of anodal tDCS or inhibitory effects of cathodal tDCS on various cognitive processes (e.g., Wiethoff et al., 2014; Minarik et al., 2015; Sahlem et al., 2015; Horvath et al., 2016; Vannorsdall et al., 2016). In fact, in a recent meta-analysis Horvath et al. (2015) argue that in young, healthy participants there is no effect of tDCS on cognition whatsoever, whereas other meta- analyses do find specific modulation of cognitive processes by tDCS; however, these effects seem to be rather weak (Hill et al., 2016; Mancuso et al., 2016). In a recent commentary the field of tDCS research was even called a research area of bad science (Underwood, 2016) in desperate need of further meticulous evaluation. Although there seems to be some inconsistency of effects there is also current work by Cason and Medina (2016) suggesting no evidence for p-hacking (strategic testing and analysis procedures to increase likelihood of obtaining significant effects) in tDCS research. However, Cason and Medina (2016) find average statistical power in tDCS studies to be below 50%. Therefore, one potential reason for the reported inconsistencies might be that sample size is usually very small in most tDCS studies (including those from our research group). Whilst this issue is not specific to tDCS studies (in fact Button et al., 2013 estimate the median statistical power in neuroscience in general being only 21%), it could lead to weaker effects often not being detected, and consequently meta- analyses suggesting small or no efficacy of tDCS. In addition, the assessment of the real effect of tDCS is further complicated by potential publication bias (file drawer problem) leading to over-reporting significant tDCS findings. That is, a publication bias favoring studies with significant effects might lead to an inflation of the reported efficacy of tDCS. Thus, depending on which studies are included in systematic reviews and meta- analyses (i.e., findings published in peer-reviewed journals; unpublished nil-effects; nil-effects reported as an additional finding in papers with the actual focus on another, significant, effect, etc.), small sample size in tDCS research could lead to both under—and overestimation of tDCS efficacy. Some current meta- analyses (e.g., Mancuso et al., 2016), however, include an estimation of publication bias (e.g., using the “trim and fill” procedure in which funnel plots are used for determining whether there is a bias toward studies with significant effects in the literature included in the meta- analysis); and overall effect size can then be adjusted accordingly. Taking publication bias into account it becomes evident that efficacy of tDCS is rather weak (Mancuso et al., 2016). As indicated by quite some inconsistency in literature on the efficacy of the stimulation, the field of tDCS research is clearly struck by the replication crisis that we also find in psychology and neurosciences in general (Button et al., 2013; Open Science Collaboration, 2015). But how to estimate efficacy of tDCS, if it is not clear, how many unsuccessful experimental attempts end up in the file drawer? As discussed above, one possibility is to adjust for publication bias in meta- analyses. Another strategy is pre-registering tDCS studies and reporting their outcome, independent of whether the results are significant or not—be it in peer reviewed journals or platforms such as the Open Science Framework (https://osf.io); this can result in more accurate estimates of efficacy. Moreover, allowing open access to the acquired data (open data) offers the opportunity that researchers could pool raw data from experiments with small samples but similar experimental designs. By doing so, they overcome the problem of under-powering, an issue that seems so fundamental in tDCS research. Therefore, to investigate the effect of sample size on tDCS efficacy and to contribute to increased research transparency we designed a simple, pre-registered study (https://osf.io/eb9c5/?view_only=2743a0c4600943c998c2c37fbfb25846) with a sufficiently large number of young, healthy volunteers estimated with a priori power analysis. Furthermore, we make all the acquired data publicly available. In a choice reaction time task (CRT) participants underwent either anodal or cathodal tDCS applied to the sensorimotor cortex. Jacobson et al. (2012) suggest that for the motor domain with tDCS over sensorimotor cortex anodal-excitation and cathodal-inhibition effects (AeCi) are quite straight forward, whereas in other cognitive domains AeCi effects seem not particularly robust. Since we stimulated the sensorimotor cortex we decided to contrast anodal with cathodal tDCS (instead of sham stimulation) for obtaining the largest possible effect. We expected anodal stimulation to result in faster response times compared to cathodal tDCS in accordance with findings by Garcia-Cossio et al. (2015). To demonstrate the importance of sample size for finding the predicted effect, random samples of different sizes were drawn from the data pool and tested statistically. This way the probability of identifying the predicted effect was obtained as a function of sample size.

Journal ArticleDOI
TL;DR: A passive Brain-Computer Interface system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions, inducing a reduction of the mental workload under which the ATCOs were operating.
Abstract: Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under- and overload conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behaviour (e.g. mental workload) of a subject by analysing its neurophysiological signals (i.e. brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (Ecole Nationale de l’Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e. overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator’s workload level towards potentially dangerous conditions of underload.

Journal ArticleDOI
TL;DR: It is demonstrated that even partial bilateral vestibular loss leads to anatomical and functional changes in the hippocampal formation and objective and subjective behavioral deficits.
Abstract: Bilateral vestibulopathy (BVP) is defined as the impairment or loss of function of either the labyrinths or the eighth nerves. Patients with total BVP due to bilateral vestibular nerve section exhibit difficulties in spatial memory and navigation and show a loss of hippocampal volume. In clinical practice, most patients do not have a complete loss of function but rather an asymmetrical residual functioning of the vestibular system. The purpose of the current study was to investigate navigational ability and hippocampal atrophy in BVP patients with residual vestibular function. Fifteen patients with BVP and a group of age- and gender- matched healthy controls were examined. Self-reported questionnaires on spatial anxiety and wayfinding were used to assess the applied strategy of wayfinding and quality of life. Spatial memory and navigation were tested directly using a virtual Morris Water Maze Task. The hippocampal volume of these two groups was evaluated by voxel-based morphometry. In the patients, the questionnaire showed a higher spatial anxiety and the Morris Water Maze Task a delayed spatial learning performance. MRI revealed a significant decrease in the gray matter mid-hippocampal volume (Left: p = 0.006, Z = 4.58, Right: p < 0.001, Z = 3.63) and posterior parahippocampal volume (Right: p = 0.005, Z = 4.65, Left: p < 0.001, Z = 3.87) compared to those of healthy controls. In addition, a decrease in hippocampal formation volume correlated with a more dominant route-finding strategy. Our current findings demonstrate that even partial bilateral vestibular loss leads to anatomical and functional

Journal ArticleDOI
TL;DR: The results demonstrate the feasibility of achieving high classification accuracies using mean and peak values of HbO and HbR as features for classification of mental arithmetic vs. rest for a two-class BCI.
Abstract: In this study, we determine the optimal feature-combination for classification of functional near-infrared spectroscopy (fNIRS) signals with the best accuracies for development of a two-class brain-computer interface (BCI). Using a multi-channel continuous-wave imaging system, mental arithmetic signals are acquired from the prefrontal cortex of seven healthy subjects. After removing physiological noises, six oxygenated and deoxygenated hemoglobin (HbO and HbR) features — mean, slope, variance, peak, skewness and kurtosis — are calculated. All possible 2- and 3-feature combinations of the calculated features are then used to classify mental arithmetic versus rest using linear discriminant analysis (LDA). It is found that the combinations containing mean and peak values yielded significantly higher (p < 0.05) classification accuracies for both HbO and HbR than did all of the other combinations, across all of the subjects. These results demonstrate the feasibility of achieving high classification accuracies using mean and peak values of HbO and HbR as features for classification of mental arithmetic versus rest for a two-class BCI.

Journal ArticleDOI
TL;DR: The theoretical framework underlying the use of VR as a therapeutic intervention for neurorehabilitation is discussed and evidence for its use in treating motor and mental disorders such as cerebral palsy, Parkinson’s disease, stroke, schizophrenia, anxiety disorders, and other related clinical areas is provided.
Abstract: In the last decade, virtual reality (VR) training has been used extensively in video games and military training to provide a sense of realism and environmental interaction to its users. More recently, VR training has been explored as a possible adjunct therapy for people with motor and mental health dysfunctions. The concept underlying VR therapy as a therapeutic treatment for motor and cognitive dysfunction is to improve plasticity of the brain by engaging users in multisensory training. In this review, we discuss the theoretical framework underlying the use of VR as a therapeutic treatment for neurorehabilitation and provide evidence for its use in treating motor and mental disorders such as cerebral palsy, Parkinson’s disease, stroke, schizophrenia, anxiety disorders and other related clinical areas. While this review provides some insights into the efficacy of VR in clinical rehabilitation, more research is needed to understand how different clinical conditions are affected by VR therapies (e.g., stimulus presentation, interactivity, control and types of VR). Further, there is a lack in robust evidence for the use of VR in clinical populations that is likely due to the inherent nature of the study design used in current research. Future studies should consider large, longitudinal randomized controlled trials to determine the true potential of VR therapies in various clinical populations. While the current literature provides some evidence for the efficacy of VR as an adjunct therapy in clinical rehabilitation, more research is needed to understand how different clinical conditions are affected by VR therapies (e.g., stimulus presentation, interactivity, control and types of VR). Future studies should consider large, longitudinal randomized controlled trials to determine the true potential of VR therapies in various clinical populations.

Journal ArticleDOI
TL;DR: It is observed that only low-performers, as defined by their no-tDCS corsi block tapping (CBT) performance, persistently showed a decrement in VWM performance after anodal stimulation, whereas no tDCS effect was found when participants were divided by their performance in digit span, suggesting that the tDCSeffect was stable across a short period of time.
Abstract: Non-invasive current stimulation (NICS) has been extensively used to examine whether neural activities can be selectively increased or decreased with manipulations of current polarity. Recently, the field has reevaluated the traditional anodal-increase and cathodal-decrease assumption due to the growing number of mixed findings that report effects of the opposite directions. Therefore, the directionality of tDCS polarities and how it affects each individual still remain unclear. In this study, we used a visual working memory paradigm and systematically manipulated tDCS polarities, types of different independent baseline measures, and task difficulty to investigate how these factors interact to determine the outcome effect of tDCS. We observed that only low-performers, as defined by their no-tDCS Corsi block tapping performance, persistently showed a decrement in visual working memory performance after anodal stimulation, whereas no tDCS effect was found when participants were divided by their performance in digit span. In addition, only the optimal level of task difficulty revealed any significant tDCS effect. All these findings were consistent across different blocks, suggesting that the tDCS effect was stable across a short period of time. Lastly, there was a high degree of intra-individual consistency in one’s responsiveness to tDCS, namely that participants who showed positive or negative effect to anodal stimulation are also more likely to show the same direction of effects for cathodal stimulation. Together, these findings imply that tDCS effect is interactive and state dependent: task difficulty and consistent individual differences modulate one’s responsiveness to NICS, while researchers’ choices of independent behavioral baseline measures can also critically affect how the effect of tDCS is evaluated. These factors together are likely the key contributors to the wide range of “noises” in NICS effects between individuals, between stimulation protocols, and between different studies in the literature. Future studies using tDCS, and possibly tACS, should take such state-dependent condition in NICS responsiveness into account.

Journal ArticleDOI
TL;DR: Novel evidence for functional differences in the limbic system associated with musical expertise is obtained, by showing enhanced liking-related activity in fronto-insular and cingulate areas in musicians.
Abstract: Emotion-related areas of the brain, such as the medial frontal cortices, amygdala, and striatum, are activated during listening to sad or happy music as well as during listening to pleasurable music. Indeed, in music, like in other arts, sad and happy emotions might co-exist and be distinct from emotions of pleasure or enjoyment. Here we aimed at discerning the neural correlates of sadness or happiness in music as opposed those related to musical enjoyment. We further investigated whether musical expertise modulates the neural activity during affective listening of music. To these aims, 13 musicians and 16 non-musicians brought to the lab their most liked and disliked musical pieces with a happy and sad connotation. Based on a listening test, we selected the most representative 18 sec excerpts of the emotions of interest for each individual participant. Functional magnetic resonance imaging (fMRI) recordings were obtained while subjects listened to and rated the excerpts. The cortico-thalamo-striatal reward circuit and motor areas were more active during liked than disliked music, whereas only the auditory cortex and the right amygdala were more active for disliked over liked music. These results discern the brain structures responsible for the perception of sad and happy emotions in music from those related to musical enjoyment. We also obtained novel evidence for functional differences in the limbic system associated with musical expertise, by showing enhanced liking-related activity in fronto-insular and cingulate areas in musicians.

Journal ArticleDOI
TL;DR: Investigating the potential contributions of motion artifacts in scalp EEG during treadmill walking at three different speeds suggests how MoBI methods may be safely deployed in neural, cognitive, and rehabilitation engineering applications.
Abstract: Recent Mobile Brain/Body Imaging (MoBI) techniques based on active electrode scalp electroencephalogram (EEG) allow the acquisition and real-time analysis of brain dynamics during active unrestrained motor behavior involving whole body movements such as treadmill walking, over-ground walking and other locomotive and non-locomotive tasks. Unfortunately, MoBI protocols are prone to physiological and non-physiological artifacts, including motion artifacts that may contaminate the EEG recordings. A few attempts have been made to quantify these artifacts during locomotion tasks but with inconclusive results due in part to methodological pitfalls. In this paper, we investigate the potential contributions of motion artifacts in scalp EEG during treadmill walking at three different speeds (1.5, 3.0, and 4.5 km/h) using a wireless 64 channel active EEG system and a wireless inertial sensor attached to the subject’s head. The experimental setup was designed according to good measurement practices using state-of-the-art commercially-available instruments, and the measurements were analyzed using Fourier analysis and wavelet coherence approaches. Contrary to prior claims, the subjects’ motion did not significantly affect their EEG during treadmill walking although precaution should be taken when gait speeds approach 4.5 km/h. Overall, these findings suggest how MoBI methods may be safely deployed in neural, cognitive, and rehabilitation engineering applications.

Journal ArticleDOI
TL;DR: The combination intervention had a significant effect on pain, anxiety and mood, and based on the similar effects on cortical plasticity outcomes, the combination intervention might have affected other neural circuits, such as those that control the affective-emotional aspects of pain.
Abstract: Fibromyalgia is a chronic pain syndrome that is associated with maladaptive plasticity in neural central circuits. One of the neural circuits that are involved in pain in fibromyalgia is the primary motor cortex. We tested a combination intervention that aimed to modulate the motor system: transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) and aerobic exercise (AE). In this phase II, sham-controlled randomized clinical trial, 45 subjects were assigned to 1 of 3 groups: tDCS + AE, AE only, and tDCS only. The following outcomes were assessed: intensity of pain, level of anxiety, quality of life, mood, pressure pain threshold, and cortical plasticity, as indexed by transcranial magnetic stimulation. There was a significant effect for the group-time interaction for intensity of pain, demonstrating that tDCS/AE was superior to AE (F(13,364)=2.25, p=0.007) and tDCS (F(13.364)=2.33, p=0.0056) alone. Post hoc adjusted analysis showed a difference between tDCS/AE and tDCS group after the first week of stimulation and after one month intervention period (p=0.02 and p=0.03, respectively). Further, after treatment there was a significant difference between groups in anxiety and mood levels. The combination treatment effected the greatest response. The three groups had no differences regarding responses in motor cortex plasticity, as assessed by TMS. The combination of tDCS with aerobic exercise is superior compared with each individual intervention (cohen’s d effect sizes > 0.55). The combination intervention had a significant effect on pain, anxiety and mood. Based on the similar effects on cortical plasticity outcomes, the combination intervention might have affected other neural circuits, such as those that control the affective-emotional aspects of pain.

Journal ArticleDOI
TL;DR: This review article outlines the evidence linking attachment adversity to psychosis, from the premorbid stages of the disorder to its clinical forms and proposes a model where embodied mentalization would lie at the core of a protective, resilience response mitigating the adverse and potentially pathological influence of the neurodevelopmental cascade of risk for psychosis.
Abstract: In this review article, we outline the evidence linking attachment adversity to psychosis, from the premorbid stages of the disorder to its clinical forms. To better understand the neurobiological mechanisms through which insecure attachment may contribute to psychosis, we identify at least five neurobiological pathways linking attachment to risk for developing psychosis. Besides its well documented influence on the hypothalamic-pituary-adrenal (HPA) axis, insecure attachment may also contribute to neurodevelopmental risk through the dopaminergic and oxytonergic systems, as well as bear influence on neuroinflammation and oxidative stress responses. We further consider the neuroscientific and behavioral studies that underpin mentalization as a suite of processes potentially moderating the risk to transition to psychotic disorders. In particular, mentalization may help the individual compensate for endophenotypical impairments in the integration of sensory and metacognitive information. We propose a model where embodied mentalization would lie at the core of a protective, resilience response mitigating the adverse and potentially pathological influence of the neurodevelopmental cascade of risk for psychosis.

Journal ArticleDOI
TL;DR: Findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.
Abstract: Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the ‘wild’. We employed an ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain’s prefrontal cortex. Measurements were taken during navigation of a college campus with either a hand-held display, or an augmented reality wearable display. Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during both secondary tasks. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that head-mounted displays offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.

Journal ArticleDOI
TL;DR: It is concluded that frontoparietal cortices, including ventral motor and somatosensory areas, reflect phonological information during speech perception and exert a causal influence on language understanding.
Abstract: In the neuroscience of language, phonemes are frequently described as multimodal units whose neuronal representations are distributed across perisylvian cortical regions, including auditory and sensorimotor areas. A different position views phonemes primarily as acoustic entities with posterior temporal localization, which are functionally independent from frontoparietal articulatory programs. To address this current controversy, we here discuss experimental results from neuroimaging (fMRI) as well as transcranial magnetic stimulation (TMS) studies. On first glance, a mixed picture emerges, with earlier research documenting neurofunctional distinctions between phonemes in both temporal and frontoparietal sensorimotor systems, but some recent work seemingly failing to replicate the latter. Detailed analysis of methodological differences between studies reveals that the way experiments are set up explains whether sensorimotor cortex maps phonological information during speech perception or not. In particular, acoustic noise during the experiment and ‘motor noise’ caused by button press tasks work against the frontoparietal manifestation of phonemes. We highlight recent studies using sparse imaging and passive speech perception tasks along with multivariate pattern analysis (MVPA) and especially representational similarity analysis (RSA), which succeeded in separating acoustic-phonological from general-acoustic processes and in mapping specific phonological information on temporal and frontoparietal regions. The question about a causal role of sensorimotor cortex on speech perception and understanding is addressed by reviewing recent TMS studies. We conclude that frontoparietal cortices, including ventral motor and somatosensory areas, reflect phonological information during speech perception and exert a causal influence on understanding.

Journal ArticleDOI
TL;DR: High-density human EEG data were recorded in two experimental paradigms: a trial-by-trial cued visual spatial attention task and a modified Sternberg working memory task, and applying Granger causality to both sensor-level and source-level data substantiates the hypothesis that top-down influences are mediated by alpha oscillations.
Abstract: Alpha oscillations (8-12 Hz) are thought to inversely correlate with cortical excitability. Goal-oriented modulation of alpha has been studied extensively. In visual spatial attention, alpha over the region of visual cortex corresponding to the attended location decreases, signifying increased excitability to facilitate the processing of impending stimuli. In contrast, in retention of verbal working memory, alpha over visual cortex increases, signifying decreased excitability to gate out stimulus input to protect the information held online from sensory interference. According to the prevailing model, this goal-oriented biasing of sensory cortex is effected by top-down control signals from frontal and parietal cortices. The present study tests and substantiates this hypothesis by (a) identifying the signals that mediate the top-down biasing influence, (b) examining whether the cortical areas issuing these signals are task-specific or task-independent, and (c) establishing the possible mechanism of the biasing action. High-density human EEG data were recorded in two experimental paradigms: a trial-by-trial cued visual spatial attention task and a modified Sternberg working memory task. Applying Granger causality to both sensor-level and source-level data we report the following findings. In covert visual spatial attention, the regions exerting top-down control over visual activity are lateralized to the right hemisphere, with the dipoles located at the right frontal eye field (FEF) and the right inferior frontal gyrus (IFG) being the main sources of top-down influences. During retention of verbal working memory, the regions exerting top-down control over visual activity are lateralized to the left hemisphere, with the dipoles located at the left middle frontal gyrus (MFG) being the main source of top-down influences. In both experiments, top-down influences are mediated by alpha oscillations, and the biasing effect is likely achieved via an inhibition-disinhibition mechanism.

Journal ArticleDOI
TL;DR: It is suggested that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients.
Abstract: Transcranial direct current stimulation (tDCS) is a representative non-invasive brain stimulation method (NIBS). tDCS increases cortical excitability not only in healthy individuals but also in stroke patients where it contributes to motor function improvement. Recently, two additional types of transcranial electrical stimulation (tES) methods have been introduced that may also prove beneficial for stimulating cortical excitability; these are transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS). However, comparison of tDCS with tRNS and tACS, in terms of efficacy in cortical excitability alteration, has not been reported thus far. We compared the efficacy of the three different tES methods for increasing cortical excitability using the same subject population and same current intensity. Fifteen healthy subjects participated in this study. Similar stimulation patterns (1.0 mA and 10 min) were used for the three conditions of stimulation (tDCS, tRNS, and tACS). Cortical excitability was explored via single-pulse TMS elicited motor evoked potentials (MEPs). Compared with pre-measurements, MEPs significantly increased with tDCS, tACS, and tRNS (p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with tRNS and tACS (p < 0.05), but not with tDCS. In addition, a significant correlation of the mean stimulation effect was observed between tRNS and tACS (p = 0.019, r = 0.598). tRNS induced a significant increase in MEP compared with the Pre or Sham at all time points. tRNS resulted in the largest significant increase in MEPs. These findings suggest that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients.

Journal ArticleDOI
TL;DR: In this paper, the authors review six major models in contemporary psychological aesthetics and present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed.
Abstract: The last decade has witnessed a renaissance of empirical and psychological approaches to art study, especially regarding cognitive models of art processing experience. This new emphasis on modeling has often become the basis for our theoretical understanding of human interaction with art. Models also often define areas of focus and hypotheses for new empirical research, and are increasingly important for connecting psychological theory to discussions of the brain. However, models are often made by different researchers, with quite different emphases or visual styles. Inputs and psychological outcomes may be differently considered, or can be under-reported with regards to key functional components. Thus, we may lose the major theoretical improvements and ability for comparison that can be had with models. To begin addressing this, this paper presents a theoretical assessment, comparison, and new articulation of a selection of key contemporary cognitive or information-processing-based approaches detailing the mechanisms underlying the viewing of art. We review six major models in contemporary psychological aesthetics. We in turn present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed. We also frame these approaches in respect to their targeted outputs (e.g., emotion, appraisal, physiological reaction) and their strengths within a more general framework of early, intermediate and later processing stages. This is used as a basis for general comparison and discussion of implications and future directions for modeling, and for theoretically understanding our engagement with visual art.

Journal ArticleDOI
TL;DR: This review incorporates both animal and human literature to comprehensively detail how AE is associated with cognitive enhancements and stimulates a cascade of neuroplastic mechanisms that support improvements in hippocampal functioning.
Abstract: Aerobic exercise (AE) has been widely praised for its potential benefits to cognition and overall brain and mental health. In particular, AE has a potent impact on promoting the function of the hippocampus and stimulating neuroplasticity. As the evidence-base rapidly builds, and given most of the supporting work can be readily translated from animal models to humans, the potential for AE to be applied as a therapeutic or adjunctive intervention for a range of human conditions appears ever more promising. Notably, many psychiatric and neurological disorders have been associated with hippocampal dysfunction, which may underlie the expression of certain symptoms common to these disorders, including (aspects of) cognitive dysfunction. Augmenting existing treatment approaches using AE based interventions may promote hippocampal function and alleviate cognitive deficits in various psychiatric disorders that currently remain untreated. Incorporating non-pharmacological interventions into clinical treatment may also have a number of other benefits to patient well being, such as limiting the risk of adverse side effects. This review incorporates both animal and human literature to comprehensively detail how AE is associated with cognitive enhancements and stimulates a cascade of neuroplastic mechanisms that support improvements in hippocampal functioning. Using the examples of schizophrenia and major depressive disorder, the utility and implementation of an AE intervention to the clinical domain will be proposed, aimed to reduce cognitive deficits in these, and related disorders.

Journal ArticleDOI
TL;DR: An integrative approach of online and offline learning resulting from intense MIP in healthy participants, and underline research avenues in the motor learning/clinical domains are concluded.
Abstract: There is now compelling evidence that motor imagery (MI) promotes motor learning. While MI has been shown to influence the early stages of the learning process, recent data revealed that sleep also contributes to the consolidation of the memory trace. How such “online” and “offline” processes take place and how they interact to impact the neural underpinnings of movements has received little attention. The aim of the present review is twofold: i) providing an overview of recent applied and fundamental studies investigating the effects of MI practice on motor learning, and ii) detangling applied and fundamental findings in support of a sleep contribution to motor consolidation after MI practice. We conclude with an integrative approach of online and offline learning resulting from intense MI practice in healthy participants, and underline research avenues in the motor learning/clinical domains.