scispace - formally typeset
Open AccessJournal ArticleDOI

Robot-assisted Therapy in Stroke Rehabilitation.

Won Hyuk Chang, +1 more
- 27 Sep 2013 - 
- Vol. 15, Iss: 3, pp 174-181
Reads0
Chats0
TLDR
The present evidence supports the use of robot-assisted therapy for improving motor function in stroke patients as an additional therapeutic intervention in combination with the conventional rehabilitation therapies.
Abstract
Research into rehabilitation robotics has grown rapidly and the number of therapeutic rehabilitation robots has expanded dramatically during the last two decades. Robotic rehabilitation therapy can deliver high-dosage and high-intensity training, making it useful for patients with motor disorders caused by stroke or spinal cord disease. Robotic devices used for motor rehabilitation include end-effector and exoskeleton types; herein, we review the clinical use of both types. One application of robot-assisted therapy is improvement of gait function in patients with stroke. Both end-effector and the exoskeleton devices have proven to be effective complements to conventional physiotherapy in patients with subacute stroke, but there is no clear evidence that robotic gait training is superior to conventional physiotherapy in patients with chronic stroke or when delivered alone. In another application, upper limb motor function training in patients recovering from stroke, robot-assisted therapy was comparable or superior to conventional therapy in patients with subacute stroke. With end-effector devices, the intensity of therapy was the most important determinant of upper limb motor recovery. However, there is insufficient evidence for the use of exoskeleton devices for upper limb motor function in patients with stroke. For rehabilitation of hand motor function, either end-effector and exoskeleton devices showed similar or additive effects relative to conventional therapy in patients with chronic stroke. The present evidence supports the use of robot-assisted therapy for improving motor function in stroke patients as an additional therapeutic intervention in combination with the conventional rehabilitation therapies. Nevertheless, there will be substantial opportunities for technical development in near future.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Spatiotemporal gait characteristic changes with gait training using the hybrid assistive limb for chronic stroke patients.

TL;DR: This study showed that increasing stride length with lengthening of the affected single-stance phase by gait training using the Hybrid Assistive Limb improved gait speed in chronic stroke patients.
Journal ArticleDOI

Risk-Based Assessment Engineering of a Parallel Robot Used in Post-Stroke Upper Limb Rehabilitation

TL;DR: This work aims to provide a reliable solution for an upper limb rehabilitation robotic structure designed as a result of a risk assessment process and an AHP to prioritize the technical characteristics of the robotic structure.
Journal ArticleDOI

Unilateral Floor Stiffness Perturbations Systematically Evoke Contralateral Leg Muscle Responses: A New Approach to Robot-Assisted Gait Therapy

TL;DR: The novel methods and results presented in this paper set the foundation for a paradigm shift in robotic interventions for gait rehabilitation by presenting a mathematical model that accurately describes the relationship between the magnitude of the stiffness perturbation and the evoked muscle activity.
Journal ArticleDOI

Effects of robot-assisted gait training in chronic stroke patients treated by botulinum toxin-a: A pivotal study.

TL;DR: Investigation of combined effects of robot-assisted training and physical therapy versus physical therapy only on balance and gait function of chronic stroke patients after botulinum toxin-A (BoNT-A) treatment found integrated treatment with RAT andPhysical therapy might provide additional benefits in chronic stroke Patients whom spasticity was treated by BoNT- A.
Journal ArticleDOI

Robot-assisted end-effector-based gait training in chronic stroke patients: A multicentric uncontrolled observational retrospective clinical study.

TL;DR: Chronic stroke patients exposed to only robot-assisted end-effector-based gait training showed significant improvements in global motor performances, gait endurance, balance and coordination, lower limbs strength and even spasticity.
References
More filters
Journal ArticleDOI

Stroke Care 2: Stroke rehabilitation

TL;DR: There is evidence to support rehabilitation in well coordinated multidisciplinary stroke units or through provision of early supported provision of discharge teams and promising interventions that could be beneficial to improve aspects of gait include fitness training, high-intensity therapy, and repetitive-task training.
Journal ArticleDOI

Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke.

TL;DR: Compared with conventional treatment, robot-assisted movements had advantages in terms of clinical and biomechanical measures and was justified into the use of robotic manipulation for motor rehabilitation.
Journal ArticleDOI

Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial

TL;DR: Greater intensity of leg rehabilitation improves functional recovery and health-related functional status, whereas greater intensity of arm rehabilitation results in small improvements in dexterity, providing further evidence that exercise therapy primarily induces treatment effects on the abilities at which training is specifically aimed.
Related Papers (5)