scispace - formally typeset
Journal ArticleDOI

Rolling friction in the dynamic simulation of sandpile formation

TLDR
In this article, a rolling friction model is proposed to avoid arbitrary treatments or unnecessary assumptions, and its validity is confirmed by the good agreement between the simulated and experimental results under comparable conditions, which suggest that the angle of repose increases significantly with the rolling friction coefficient and decreases with particle size.
Abstract
The contact between spheres results in a rolling resistance due to elastic hysteresis losses or viscous dissipation. This resistance is shown to be important in the three-dimensional dynamic simulation of the formation of a heap of spheres. The implementation of a rolling friction model can avoid arbitrary treatments or unnecessary assumptions, and its validity is confirmed by the good agreement between the simulated and experimental results under comparable conditions. Numerical results suggest that the angle of repose increases significantly with the rolling friction coefficient and decreases with particle size.

read more

Citations
More filters
Journal ArticleDOI

Discrete particle simulation of particulate systems: Theoretical developments

TL;DR: This paper reviews the work in this area with special reference to the discrete element method and associated theoretical developments, and covers three important aspects: models for the calculation of the particle–particle and particle–fluid interaction forces, coupling of discrete elements method with computational fluid dynamics to describe particle-fluid flow, and the theories for linking discrete to continuum modelling.
Journal ArticleDOI

Discrete particle simulation of particulate systems: A review of major applications and findings

TL;DR: Zhu et al. as discussed by the authors provided a summary of the studies based on discrete particle simulation in the past two decades or so, with emphasis on the microdynamics including packing/flow structure and particle-particle, particle-fluid and particle wall interaction forces.
Journal ArticleDOI

Models, algorithms and validation for opensource DEM and CFD-DEM

TL;DR: In this article, the authors present a multi-purpose CFD-DEM framework to simulate coupled fluid-granular systems, where the motion of the particles is resolved by means of the Discrete Element Method (DEM), and the Computational Fluid Dynamics (CFD) method is used to calculate the interstitial fluid flow.
Journal ArticleDOI

Assessment of rolling resistance models in discrete element simulations

TL;DR: A review of the commonly used models for rolling resistance and a more general model is presented in this article, where the robustness of these models in reproducing rolling resistance effects arising from different physical situations was assessed by using several benchmarking test cases.
Journal ArticleDOI

Discrete particle simulation of particle–fluid flow: model formulations and their applicability

TL;DR: In this paper, the origin and applicability of different CFD-DEM models are discussed and compared theoretically and then verified from the study of three representative particle-fluid flow systems: fluidization, pneumatic conveying and hydrocyclones.
References
More filters
Journal Article

Discrete numerical model for granular assemblies.

Peter Cundall, +1 more
- 01 Jan 1979 - 
TL;DR: The distinct element method as mentioned in this paper is a numerical model capable of describing the mechanical behavior of assemblies of discs and spheres and is based on the use of an explicit numerical scheme in which the interaction of the particles is monitored contact by contact and the motion of the objects modelled particle by particle.
Journal ArticleDOI

A discrete numerical model for granular assemblies

Peter Cundall, +1 more
- 01 Mar 1979 - 
TL;DR: The distinct element method as mentioned in this paper is a numerical model capable of describing the mechanical behavior of assemblies of discs and spheres and is based on the use of an explicit numerical scheme in which the interaction of the particles is monitored contact by contact and the motion of the objects modelled particle by particle.
Journal ArticleDOI

Self-organized criticality: An explanation of the 1/ f noise

TL;DR: It is shown that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point, and flicker noise, or 1/f noise, can be identified with the dynamics of the critical state.
MonographDOI

Contact Mechanics: Frontmatter

K. L. Johnson
Journal ArticleDOI

Physics of the Granular State

TL;DR: The generation of analogies between the physics found in a simple sandpile and that found in complicated microscopic systems, such as flux motion in superconductors or spin glasses, has prompted a number of new theories and to a new era of experimentation on granular systems.
Related Papers (5)