scispace - formally typeset
Journal ArticleDOI

Saliency-Guided Unsupervised Feature Learning for Scene Classification

Fan Zhang, +2 more
- 01 Apr 2015 - 
- Vol. 53, Iss: 4, pp 2175-2184
TLDR
The proposed unsupervised-feature-learning-based scene classification method provides more accurate classification results than the other latent-Dirichlet-allocation-based methods and the sparse coding method.
Abstract
Due to the rapid technological development of various different satellite sensors, a huge volume of high-resolution image data sets can now be acquired. How to efficiently represent and recognize the scenes from such high-resolution image data has become a critical task. In this paper, we propose an unsupervised feature learning framework for scene classification. By using the saliency detection algorithm, we extract a representative set of patches from the salient regions in the image data set. These unlabeled data patches are exploited by an unsupervised feature learning method to learn a set of feature extractors which are robust and efficient and do not need elaborately designed descriptors such as the scale-invariant-feature-transform-based algorithm. We show that the statistics generated from the learned feature extractors can characterize a complex scene very well and can produce excellent classification accuracy. In order to reduce overfitting in the feature learning step, we further employ a recently developed regularization method called “dropout,” which has proved to be very effective in image classification. In the experiments, the proposed method was applied to two challenging high-resolution data sets: the UC Merced data set containing 21 different aerial scene categories with a submeter resolution and the Sydney data set containing seven land-use categories with a 60-cm spatial resolution. The proposed method obtained results that were equal to or even better than the previous best results with the UC Merced data set, and it also obtained the highest accuracy with the Sydney data set, demonstrating that the proposed unsupervised-feature-learning-based scene classification method provides more accurate classification results than the other latent-Dirichlet-allocation-based methods and the sparse coding method.

read more

Citations
More filters
Journal ArticleDOI

Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art

TL;DR: A general framework of DL for RS data is provided, and the state-of-the-art DL methods in RS are regarded as special cases of input-output data combined with various deep networks and tuning tricks.
Journal ArticleDOI

Remote Sensing Image Scene Classification: Benchmark and State of the Art

TL;DR: A large-scale data set, termed “NWPU-RESISC45,” is proposed, which is a publicly available benchmark for REmote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU).
Journal ArticleDOI

Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data

TL;DR: A multilevel DL architecture that targets land cover and crop type classification from multitemporal multisource satellite imagery outperforms the one with MLPs allowing us to better discriminate certain summer crop types.
Journal ArticleDOI

AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification

TL;DR: The Aerial Image Data Set (AID) as mentioned in this paper is a large-scale data set for aerial scene classification, which contains more than 10,000 aerial images from remote sensing images.
Journal ArticleDOI

Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery

TL;DR: This paper proposes two scenarios for generating image features via extracting CNN features from different layers and reveals that the features from pre-trained CNNs generalize well to HRRS datasets and are more expressive than the low- and mid-level features.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Journal ArticleDOI

Latent dirichlet allocation

TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Proceedings Article

Latent Dirichlet Allocation

TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Journal ArticleDOI

Learning representations by back-propagating errors

TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Related Papers (5)