scispace - formally typeset
Open AccessProceedings ArticleDOI

SEGAN: Speech Enhancement Generative Adversarial Network

Reads0
Chats0
TLDR
This work proposes the use of generative adversarial networks for speech enhancement, and operates at the waveform level, training the model end-to-end, and incorporate 28 speakers and 40 different noise conditions into the same model, such that model parameters are shared across them.
Abstract
Current speech enhancement techniques operate on the spectral domain and/or exploit some higher-level feature. The majority of them tackle a limited number of noise conditions and rely on first-order statistics. To circumvent these issues, deep networks are being increasingly used, thanks to their ability to learn complex functions from large example sets. In this work, we propose the use of generative adversarial networks for speech enhancement. In contrast to current techniques, we operate at the waveform level, training the model end-to-end, and incorporate 28 speakers and 40 different noise conditions into the same model, such that model parameters are shared across them. We evaluate the proposed model using an independent, unseen test set with two speakers and 20 alternative noise conditions. The enhanced samples confirm the viability of the proposed model, and both objective and subjective evaluations confirm the effectiveness of it. With that, we open the exploration of generative architectures for speech enhancement, which may progressively incorporate further speech-centric design choices to improve their performance.

read more

Citations
More filters
Journal ArticleDOI

Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation

TL;DR: A fully convolutional time-domain audio separation network (Conv-TasNet), a deep learning framework for end-to-end time- domain speech separation, which significantly outperforms previous time–frequency masking methods in separating two- and three-speaker mixtures.
Journal ArticleDOI

Supervised Speech Separation Based on Deep Learning: An Overview

TL;DR: A comprehensive overview of deep learning-based supervised speech separation can be found in this paper, where three main components of supervised separation are discussed: learning machines, training targets, and acoustic features.
Journal ArticleDOI

A Survey on Deep Learning: Algorithms, Techniques, and Applications

TL;DR: A comprehensive review of historical and recent state-of-the-art approaches in visual, audio, and text processing; social network analysis; and natural language processing is presented, followed by the in-depth analysis on pivoting and groundbreaking advances in deep learning applications.
Posted Content

The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches.

TL;DR: This report presents a brief survey on development of DL approaches, including Deep Neural Network (DNN), Convolutional neural network (CNN), Recurrent Neural network (RNN) including Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL).
Journal ArticleDOI

Deep Learning for Audio Signal Processing

TL;DR: Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross fertilization between areas.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Posted Content

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

TL;DR: This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.
Posted Content

Image-to-Image Translation with Conditional Adversarial Networks

TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Related Papers (5)