scispace - formally typeset
Journal ArticleDOI

Self-Tuning Virtual Synchronous Machine: A Control Strategy for Energy Storage Systems to Support Dynamic Frequency Control

TLDR
In this paper, a virtual synchronous machine (VSM) is used to support dynamic frequency control in a diesel-hybrid autonomous power system, where self-tuning algorithms are used to continuously search for optimal parameters during the operation of the VSM in order to minimize the amplitude and rate of change of the frequency variations and the power flow through the ESS.
Abstract
This paper investigates the use of a virtual synchronous machine (VSM) to support dynamic frequency control in a diesel-hybrid autonomous power system. The proposed VSM entails controlling the grid-interface converter of an energy storage system (ESS) to emulate the inertial response and the damping power of a synchronous generator. In addition, self-tuning algorithms are used to continuously search for optimal parameters during the operation of the VSM in order to minimize the amplitude and rate of change of the frequency variations and the power flow through the ESS. The performances of the proposed self-tuning (ST)-VSM and the constant parameters (CP)-VSM were evaluated by comparing their inertial responses and their damping powers for different scenarios of load variations. For the simulated cases, the ST-VSM achieved a similar performance to that of the CP-VSM, while reducing the power flow through the ESS in up to 58%. Moreover, in all the simulated scenarios, the ST-VSM was found to be more efficient than the CP-VSM in attenuating frequency variations, i.e., it used less energy per Hertz reduced.

read more

Citations
More filters
Journal ArticleDOI

Comparison of Dynamic Characteristics Between Virtual Synchronous Generator and Droop Control in Inverter-Based Distributed Generators

TL;DR: In this article, an inertial droop control method is proposed based on the comparison of dynamic characteristics of both control methods, in both stand-alone mode and synchronous-generator-connected mode, to understand the differences caused by swing equation.
Proceedings ArticleDOI

Foundations and Challenges of Low-Inertia Systems (Invited Paper)

TL;DR: The challenges of such low-inertia power systems are reviewed, the solutions that have been put forward thus far are surveyed, and the topics of power system stability, modeling, and control are touched upon.
Journal ArticleDOI

Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources

TL;DR: In this paper, an extensive literature review is conducted on emerging power quality challenges due to renewable energy integration, which are caused by non-controllable variability of renewable energy resources.
Journal ArticleDOI

Virtual Inertia: Current Trends and Future Directions

TL;DR: In this article, the authors present a literature review of the current state-of-the-art of virtual inertia implementation techniques and explore potential research directions and challenges, and discuss several research needs, especially for systems level integration of VINs.
Journal ArticleDOI

Enhanced Virtual Synchronous Generator Control for Parallel Inverters in Microgrids

TL;DR: An enhanced VSG control is proposed, with which oscillation damping and proper transient active power sharing are achieved by adjusting the virtual stator reactance based on state-space analyses and communication-less accurate reactive power sharing is achieved based on inversed voltage droop control feature and common ac bus voltage estimation.
References
More filters
Journal ArticleDOI

Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives

TL;DR: This paper covers the high-power voltage-source inverter and the most used multilevel-inverter topologies, including the neutral-point-clamped, cascaded H-bridge, and flying-capacitor converters.
Journal ArticleDOI

Synchronverters: Inverters That Mimic Synchronous Generators

TL;DR: The idea of operating an inverter to mimic a synchronous generator (SG) is motivated and developed, and the inverters that are operated in this way are called synchronverters.
Journal ArticleDOI

Model Predictive Control—A Simple and Powerful Method to Control Power Converters

TL;DR: The feasibility and great potential of FCS-MPC due to present-day signal-processing capabilities, particularly for power systems with a reduced number of switching states and more complex operating principles, such as matrix converters are found.
Journal ArticleDOI

A Voltage and Frequency Droop Control Method for Parallel Inverters

TL;DR: In this paper, a new control method for the parallel operation of inverters operating in an island grid or connected to an infinite bus is described, where each inverter supplies a current that is the result of the voltage difference between a reference ac voltage source and the grid voltage across a virtual complex impedance.
Journal ArticleDOI

Wind turbines emulating inertia and supporting primary frequency control

TL;DR: In this article, a method is proposed to let variable-speed wind turbines emulate inertia and support primary frequency control, where the required power is obtained from the kinetic energy stored in the rotating mass of the turbine blades.
Related Papers (5)