scispace - formally typeset
Open AccessPosted Content

Speeding up Convolutional Neural Networks with Low Rank Expansions

TLDR
In this paper, the authors exploit cross-channel or filter redundancy to construct a low rank basis of filters that are rank-1 in the spatial domain, which can be easily applied to existing CPU and GPU convolutional frameworks for tuneable speedup performance.
Abstract
The focus of this paper is speeding up the evaluation of convolutional neural networks. While delivering impressive results across a range of computer vision and machine learning tasks, these networks are computationally demanding, limiting their deployability. Convolutional layers generally consume the bulk of the processing time, and so in this work we present two simple schemes for drastically speeding up these layers. This is achieved by exploiting cross-channel or filter redundancy to construct a low rank basis of filters that are rank-1 in the spatial domain. Our methods are architecture agnostic, and can be easily applied to existing CPU and GPU convolutional frameworks for tuneable speedup performance. We demonstrate this with a real world network designed for scene text character recognition, showing a possible 2.5x speedup with no loss in accuracy, and 4.5x speedup with less than 1% drop in accuracy, still achieving state-of-the-art on standard benchmarks.

read more

Citations
More filters
Posted Content

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

TL;DR: This work introduces two simple global hyper-parameters that efficiently trade off between latency and accuracy and demonstrates the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.
Proceedings ArticleDOI

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

TL;DR: ShuffleNet as discussed by the authors utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy, and achieves an actual speedup over AlexNet while maintaining comparable accuracy.
Journal ArticleDOI

Recent advances in convolutional neural networks

TL;DR: A broad survey of the recent advances in convolutional neural networks can be found in this article, where the authors discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.
Posted Content

Aggregated Residual Transformations for Deep Neural Networks

TL;DR: On the ImageNet-1K dataset, it is empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy and is more effective than going deeper or wider when the authors increase the capacity.
Proceedings ArticleDOI

Channel Pruning for Accelerating Very Deep Neural Networks

TL;DR: In this paper, a LASSO regression based channel selection and least square reconstruction is proposed to accelerate very deep convolutional neural networks, which achieves 5× speedup along with only 0.3% increase of error.
References
More filters
Posted Content

Improving neural networks by preventing co-adaptation of feature detectors

TL;DR: The authors randomly omits half of the feature detectors on each training case to prevent complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors.
Proceedings ArticleDOI

CNN Features Off-the-Shelf: An Astounding Baseline for Recognition

TL;DR: In this paper, features extracted from the OverFeat network are used as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets.
Proceedings ArticleDOI

Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks

TL;DR: This work designs a method to reuse layers trained on the ImageNet dataset to compute mid-level image representation for images in the PASCAL VOC dataset, and shows that despite differences in image statistics and tasks in the two datasets, the transferred representation leads to significantly improved results for object and action classification.
Proceedings Article

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

TL;DR: In this article, a multiscale and sliding window approach is proposed to predict object boundaries, which is then accumulated rather than suppressed in order to increase detection confidence, and OverFeat is the winner of the ImageNet Large Scale Visual Recognition Challenge 2013.
Proceedings ArticleDOI

Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations

TL;DR: The convolutional deep belief network is presented, a hierarchical generative model which scales to realistic image sizes and is translation-invariant and supports efficient bottom-up and top-down probabilistic inference.
Related Papers (5)