scispace - formally typeset
Journal ArticleDOI

Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter

Reads0
Chats0
TLDR
In this paper, a stochastic model of nitrogen and phosphorus mineralization was extended to include physical losses of organic compounds from leaching and other processes, and chemical heterogeneity of litter substrates.
Abstract
The mineralization of nitrogen and phosphorus from plant residues provides an important input of inorganic nutrients to the soil, which can be taken up by plants. The dynamics of nutrient mineralization or immobilization during decomposition are controlled by different biological and physical factors. Decomposers sequester carbon and nutrients from organic substrates and exchange inorganic nutrients with the environment to maintain their stoichiometric balance. Additionally, physical losses of organic compounds from leaching and other processes may alter the nutrient content of litter. In this work, we extend a stoichiometric model of litter nitrogen mineralization to include (1) phosphorus mineralization, (2) physical losses of organic nutrients, and (3) chemical heterogeneity of litter substrates. The enhanced model provides analytical mineralization curves for nitrogen and phosphorus as well as critical litter carbon : nutrient ratios (the carbon : nutrient ratios below which net nutrient release occurs) as a function of the elemental composition of the decomposers, their carbon-use efficiency, and the rate of physical loss of organic compounds. The model is used to infer the critical litter carbon : nutrient ratios from observed nitrogen and phosphorus dynamics in about 2600 litterbag samplings from 21 decomposition data sets spanning artic to tropical ecosystems. At the beginning of decomposition, nitrogen and phosphorus tend to be immobilized in boreal and temperate climates (i.e., both C:N and C:P critical ratios are lower than the initial ratios), while in tropical areas nitrogen is generally released and phosphorus may be either immobilized or released, regardless of the typically low phosphorus concentrations. The critical carbon : nutrient ratios we observed were found to increase with initial litter carbon : nutrient ratios, indicating that decomposers adapt to low-nutrient conditions by reducing their carbon-use efficiency. This stoichiometric control on nutrient dynamics appears ubiquitous across climatic regions and ecosystems, although other biological and physical processes also play important roles in litter decomposition. In tropical humid conditions, we found high critical C:P ratios likely due to high leaching and low decomposer phosphorus concentrations. In general, the compound effects of stoichiometric constraints and physical losses explain most of the variability in critical carbon : nutrient ratios and dynamics of nutrient immobilization and release at the global scale.

read more

Citations
More filters
Journal ArticleDOI

The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

TL;DR: It is proposed that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes, and become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix.
Journal ArticleDOI

Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils

TL;DR: Theoretical considerations and empirical evidence indicate that CUE decreases as temperature increases and nutrient availability decreases, and current biogeochemical models could be improved by accounting for these CUE responses along environmental and stoichiometric gradients.
Journal ArticleDOI

The Application of ecological stoichiometry to plant-microbial-soil organic matter transformations

TL;DR: In this article, the effects of resource stoichiometry on soil microorganisms and decomposition, specifically on the structure and function of the soil food web, have been investigated, focusing on heterotrophic microbial communities.
Journal ArticleDOI

Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling

TL;DR: It is recommended that broad-scale models use a CUE value of 0.30, unless there is evidence for lower values as a result of pervasive nutrient limitations, as well as environmental drivers, to predict the CUE of microbial communities.
References
More filters
Book

Advanced mathematical methods for scientists and engineers

TL;DR: A self-contained presentation of the methods of asymptotics and perturbation theory, methods useful for obtaining approximate analytical solutions to differential and difference equations is given in this paper.
Book

Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere

TL;DR: Thank you very much for reading ecological stoichiometry the biology of elements from molecules to the biosphere, and maybe you have knowledge that, people have look hundreds of times for their chosen readings, but end up in infectious downloads.
Journal ArticleDOI

Nitrogen limitation on land and in the sea: How can it occur?

TL;DR: In this paper, the authors examine both how the biogeochemistry of the nitrogen cycle could cause limitation to develop, and how nitrogen limitation could persist as a consequence of processes that prevent or reduce nitrogen fixation.
Journal ArticleDOI

Herbivory in relation to plant nitrogen content

TL;DR: The evidence that N is scarce and perhaps a limiting nutrient for many herbivores, and that in response to this selection pressure, many Herbivores have evolved specific behavioral, morphological, physiological, and other adaptations to cope with and uti­ lize the ambient N levels of their normal haunts is examined.
Related Papers (5)