scispace - formally typeset
Journal ArticleDOI

Structural, electronic, and bonding properties of liquid water from first principles

Pier Luigi Silvestrelli, +1 more
- 10 Aug 1999 - 
- Vol. 111, Iss: 8, pp 3572-3580
Reads0
Chats0
TLDR
In this article, structural, electronic, and bonding properties of liquid water have been studied using the maximally localized Wannier functions, which can describe the molecular charge distribution and the polarization effects in liquid water with a degree of accuracy not previously possible.
Abstract
We study, from first principles, structural, electronic, and bonding properties of liquid water. Our system is twice as large as that used in previous ab initio simulations and our computed structural properties are in good agreement with the most recent neutron scattering experiments. Moreover, the use of a novel technique, based on the generation of maximally localized Wannier functions, allowed us to describe the molecular charge distribution and the polarization effects in liquid water with a degree of accuracy not previously possible. We find that, in the liquid phase, the water molecule dipole moment has a broad distribution around an average value of about 3.0 D. This value is 60% higher than that of the gas phase and significantly larger than most previous estimates. A considerable increase is also observed in the magnitude of the average eigenvalues of the quadrupole moment tensor. We also find that the anisotropy of the electronic charge distribution of the water molecule is reduced in the liquid. The relevance of these results for current modeling of liquid water is discussed.

read more

Citations
More filters
Journal ArticleDOI

Maximally-localized Wannier Functions: Theory and Applications

TL;DR: In this paper, the authors present a survey of the use of Wannier functions in the context of electronic-structure theory, including their applications in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization.
Journal ArticleDOI

The Structure of the First Coordination Shell in Liquid Water

TL;DR: X-ray absorption spectroscopy and x-ray Raman scattering were used to probe the molecular arrangement in the first coordination shell of liquid water and set a strong limit for possible local structure distributions in liquid water.
Journal ArticleDOI

A reappraisal of what we have learnt during three decades of computer simulations on water

TL;DR: The purpose is to appraise what have been accomplished during all these years of model potentials publication and testing and what deserves to be improved and to give some guidance for future investigations.
Journal ArticleDOI

Simulating water with rigid non-polarizable models: a general perspective

TL;DR: A test is proposed in which 17 properties of water, from the vapour and liquid to the solid phases, are taken into account to evaluate the performance of a water model, being quantitative and selecting properties from all phases of water can be useful in the future to identify progress in the modelling of water.
Journal ArticleDOI

Proton transfer 200 years after von Grotthuss: insights from ab initio simulations.

TL;DR: Several systems of seemingly quite different nature and of increasing complexity, such as Grotthuss diffusion in water, excited-state proton-transfer in solution, phase transitions in ice, and protonated water networks in the membrane protein bacteriorhodopsin, are discussed in the realms of a unifying viewpoint.
References
More filters
Journal ArticleDOI

Density-functional exchange-energy approximation with correct asymptotic behavior.

TL;DR: This work reports a gradient-corrected exchange-energy functional, containing only one parameter, that fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.
Journal ArticleDOI

Comparison of simple potential functions for simulating liquid water

TL;DR: In this article, the authors compared the Bernal Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P potential functions for liquid water in the NPT ensemble at 25°C and 1 atm.
Journal ArticleDOI

Efficient pseudopotentials for plane-wave calculations

TL;DR: It is found that these pseudopotentials are extremely efficient for the cases where the plane-wave expansion has a slow convergence, in particular, for systems containing first-row elements, transition metals, and rare-earth elements.
Journal ArticleDOI

Unified Approach for Molecular Dynamics and Density-Functional Theory

TL;DR: In this article, a unified scheme combining molecular dynamics and density-functional theory is presented, which makes possible the simulation of both covalently bonded and metallic systems and permits the application of density functional theory to much larger systems than previously feasible.
Book

Water:A Comprehensive Treatise

Felix Franks
Related Papers (5)