scispace - formally typeset
Journal ArticleDOI

Subdivisions of hymenopteran mushroom body calyces by their afferent supply

Wulfila Gronenberg
- 09 Jul 2001 - 
- Vol. 435, Iss: 4, pp 474-489
Reads0
Chats0
TLDR
The data suggest that the many parallel channels of intrinsic neurons may each process different aspects of sensory input information within the mushroom body's calyx, which is particularly large in social Hymenoptera.
Abstract
The mushroom bodies are regions in the insect brain involved in processing complex multimodal information. They are composed of many parallel sets of intrinsic neurons that receive input from and transfer output to extrinsic neurons that connect the mushroom bodies with the surrounding neuropils. Mushroom bodies are particularly large in social Hymenoptera and are thought to be involved in the control of conspicuous orientation, learning, and memory capabilities of these insects. The present account compares the organization of sensory input to the mushroom body's calyx in different Hymenoptera. Tracer and conventional neuronal staining procedures reveal the following anatomic characteristics: The calyx comprises three subdivisions, the lip, collar, and basal ring. The lip receives antennal lobe afferents, and these olfactory input neurons can terminate in two or more segregated zones within the lip. The collar receives visual afferents that are bilateral with equal representation of both eyes in each calyx. Visual inputs provide two to three layers of processes in the collar subdivision. The basal ring is subdivided into two modality-specific zones, one receiving visual, the other antennal lobe input. Some overlap of modality exists between calycal subdivisions and within the basal ring, and the degree of segregation of sensory input within the calyx is species-specific. The data suggest that the many parallel channels of intrinsic neurons may each process different aspects of sensory input information.

read more

Citations
More filters
Journal ArticleDOI

The neuroecology of insect-plant interactions: the importance of physiological state and sensory integration.

TL;DR: These studies show that complex stimuli are represented in unique percepts that are different from their sensory channels and that the representations may be modulated by physiological state.
Journal ArticleDOI

Stochastic and Arbitrarily Generated Input Patterns to the Mushroom Bodies Can Serve as Conditioned Stimuli in Drosophila.

TL;DR: It is shown that fruit flies can learn thermogenetically generated, stochastic activity patterns of OPNs as conditioned stimuli, irrespective of glomerular identity, the innate valence that the projection neurons carry, or inter-hemispheric symmetry.
Journal ArticleDOI

Cloning and expression analysis of a muscarinic cholinergic receptor from the brain of ant, Polyrhachis vicina.

TL;DR: It is revealed that PmAchR is widely expressed in different soma clusters of the brain, including the mushroom bodies, the antennal lobes, as well as the optic lobes (OL), and the most intensely staining is found in Kenyon cells.
Journal ArticleDOI

Multimodal Information Processing and Associative Learning in the Insect Brain

Devasena Thiagarajan, +1 more
- 28 Mar 2022 - 
TL;DR: This review has summarized various studies that investigated sensory integration across modalities, with emphasis on three insect models (honeybees, ants and flies), their behaviors, and the corresponding neuronal underpinnings.
Journal ArticleDOI

Working memory in bees: also in flies?

TL;DR: It is concluded that studies in Drosophila learning and memory in the tradition of Martin Heisenberg may gain from cognitive concepts, meaning that the “internal doing” of the brain should be included in the search for the neural basis of decision making.
References
More filters
Book

The Insect Societies

TL;DR: In this article, a definitive study of the social structure and symbiotic relationships of termites, social wasps, bees, and ants was conducted. But the authors focused on the relationship between ants and termites.
Book

The dance language and orientation of bees

TL;DR: The Dance Language and Orientation of Bees as discussed by the authors is a seminal work in the field of honeybee behavior that describes in non-technical language what he discovered in a lifetime of study about honeybees - their methods of orientation, their sensory faculties, and their remarkable ability to communicate with one another.
Journal Article

The Insect Societies

TL;DR: The author wished to relate the three phases of research on insects and to express insect sociology as population biology in this detailed survey of knowledge of insect societies.
Journal ArticleDOI

Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies

TL;DR: The results demonstrate that MBs mediate associative odor learning in flies, and that adult flies developing without MBs are unable to perform in a classical conditioning paradigm that tests associative learning of odor cues and electric shock.
Related Papers (5)
Trending Questions (1)
How are the zones in the mushroom body formed?

The zones in the mushroom body are formed based on the specific sensory inputs they receive, with subdivisions like the lip, collar, and basal ring processing olfactory, visual, and mixed inputs.