scispace - formally typeset
Journal ArticleDOI

Subdivisions of hymenopteran mushroom body calyces by their afferent supply

Wulfila Gronenberg
- 09 Jul 2001 - 
- Vol. 435, Iss: 4, pp 474-489
Reads0
Chats0
TLDR
The data suggest that the many parallel channels of intrinsic neurons may each process different aspects of sensory input information within the mushroom body's calyx, which is particularly large in social Hymenoptera.
Abstract
The mushroom bodies are regions in the insect brain involved in processing complex multimodal information. They are composed of many parallel sets of intrinsic neurons that receive input from and transfer output to extrinsic neurons that connect the mushroom bodies with the surrounding neuropils. Mushroom bodies are particularly large in social Hymenoptera and are thought to be involved in the control of conspicuous orientation, learning, and memory capabilities of these insects. The present account compares the organization of sensory input to the mushroom body's calyx in different Hymenoptera. Tracer and conventional neuronal staining procedures reveal the following anatomic characteristics: The calyx comprises three subdivisions, the lip, collar, and basal ring. The lip receives antennal lobe afferents, and these olfactory input neurons can terminate in two or more segregated zones within the lip. The collar receives visual afferents that are bilateral with equal representation of both eyes in each calyx. Visual inputs provide two to three layers of processes in the collar subdivision. The basal ring is subdivided into two modality-specific zones, one receiving visual, the other antennal lobe input. Some overlap of modality exists between calycal subdivisions and within the basal ring, and the degree of segregation of sensory input within the calyx is species-specific. The data suggest that the many parallel channels of intrinsic neurons may each process different aspects of sensory input information.

read more

Citations
More filters
Journal ArticleDOI

Electrical potentials indicate stimulus expectancy in the brains of ants and bees.

TL;DR: Electroretinograms from the eyes and visually evoked potentials from central brain areas of honey bees and ants, social insects to which cognitive abilities have been ascribed and whose rich-behavioral repertoires include navigation, learning and memory are recorded.
Posted ContentDOI

Two parallel pathways convey distinct visual information to the Drosophila mushroom body

TL;DR: Two novel types of mushroom body input neuron that connect a processing center — the lobula— to the dorsal accessory calyx of the mushroom body are identified, which could be a fundamental feature of the neuronal architecture underlying multisensory integration in associative brain centers.
Journal ArticleDOI

Neuropile organization in the brain of Acromyrmex (Hymenoptera, Formicidae) during the post-embryonic development

TL;DR: The components of this organization were observed and discussed in this study in the ant Acromyrmex octospinosus, evidencing similar features to those described for A. subterraneus subterraneu, among other insects for the which ones this information is available.
Journal ArticleDOI

Shore crabs reveal novel evolutionary attributes of the mushroom body.

TL;DR: In Brachyura, the most recent malacostracan lineage in the shore crab Hemigrapsus nudus, instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it with their columns extending outwards to an expansive system of gyri on the brain's surface as discussed by the authors.
Journal ArticleDOI

Insect brain plasticity: effects of olfactory input on neuropil size

TL;DR: The results indicate that such experience-dependent volumetric expansions of calyces observed in other studies may have been caused by cognitive processes rather than by sensory input, bringing some causative clarity to a complex neural phenomenon.
References
More filters
Book

The Insect Societies

TL;DR: In this article, a definitive study of the social structure and symbiotic relationships of termites, social wasps, bees, and ants was conducted. But the authors focused on the relationship between ants and termites.
Book

The dance language and orientation of bees

TL;DR: The Dance Language and Orientation of Bees as discussed by the authors is a seminal work in the field of honeybee behavior that describes in non-technical language what he discovered in a lifetime of study about honeybees - their methods of orientation, their sensory faculties, and their remarkable ability to communicate with one another.
Journal Article

The Insect Societies

TL;DR: The author wished to relate the three phases of research on insects and to express insect sociology as population biology in this detailed survey of knowledge of insect societies.
Journal ArticleDOI

Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies

TL;DR: The results demonstrate that MBs mediate associative odor learning in flies, and that adult flies developing without MBs are unable to perform in a classical conditioning paradigm that tests associative learning of odor cues and electric shock.
Related Papers (5)
Trending Questions (1)
How are the zones in the mushroom body formed?

The zones in the mushroom body are formed based on the specific sensory inputs they receive, with subdivisions like the lip, collar, and basal ring processing olfactory, visual, and mixed inputs.