scispace - formally typeset
Open AccessJournal ArticleDOI

Symmetry protected topological orders and the group cohomology of their symmetry group

Reads0
Chats0
TLDR
In this paper, it was shown that the boundary excitations of SPT phases can be described by a nonlocal Lagrangian term that generalizes the Wess-Zumino-Witten term for continuous nonlinear σ models.
Abstract
Symmetry protected topological (SPT) phases are gapped short-range-entangled quantum phases with a symmetry G. They can all be smoothly connected to the same trivial product state if we break the symmetry. The Haldane phase of spin-1 chain is the first example of SPT phases which is protected by SO(3) spin rotation symmetry. The topological insulator is another example of SPT phases which are protected by U(1) and time-reversal symmetries. In this paper, we show that interacting bosonic SPT phases can be systematically described by group cohomology theory: Distinct d-dimensional bosonic SPT phases with on-site symmetry G (which may contain antiunitary time-reversal symmetry) can be labeled by the elements in H^(1+d)[G,UT(1)], the Borel (1+d)-group-cohomology classes of G over the G module UT(1). Our theory, which leads to explicit ground-state wave functions and commuting projector Hamiltonians, is based on a new type of topological term that generalizes the topological θ term in continuous nonlinear σ models to lattice nonlinear σ models. The boundary excitations of the nontrivial SPT phases are described by lattice nonlinear σ models with a nonlocal Lagrangian term that generalizes the Wess-Zumino-Witten term for continuous nonlinear σ models. As a result, the symmetry G must be realized as a non-on-site symmetry for the low-energy boundary excitations, and those boundary states must be gapless or degenerate. As an application of our result, we can use H^(1+d)[U(1)⋊ Z^(T)_(2),U_T(1)] to obtain interacting bosonic topological insulators (protected by time reversal Z2T and boson number conservation), which contain one nontrivial phase in one-dimensional (1D) or 2D and three in 3D. We also obtain interacting bosonic topological superconductors (protected by time-reversal symmetry only), in term of H^(1+d)[Z^(T)_(2),U_T(1)], which contain one nontrivial phase in odd spatial dimensions and none for even dimensions. Our result is much more general than the above two examples, since it is for any symmetry group. For example, we can use H1+d[U(1)×Z2T,UT(1)] to construct the SPT phases of integer spin systems with time-reversal and U(1) spin rotation symmetry, which contain three nontrivial SPT phases in 1D, none in 2D, and seven in 3D. Even more generally, we find that the different bosonic symmetry breaking short-range-entangled phases are labeled by the following three mathematical objects: (G_H,G_Ψ,H^(1+d)[G_Ψ,U_T(1)]), where G_H is the symmetry group of the Hamiltonian and G_Ψ the symmetry group of the ground states.

read more

Citations
More filters
Journal ArticleDOI

An index for two-dimensional SPT states

TL;DR: In this paper, the authors define an index for 2D G-invariant invertible states of bosonic lattice systems in the thermodynamic limit for a finite symmetry group G with a unitary action and show that this index is an invariant of the symmetry protected phase.
Journal ArticleDOI

Symmetry-Protected Topological Edge Modes and Emergent Partial Time-Reversal Symmetry Breaking in Open Quantum Many-Body Systems.

TL;DR: In this paper, the effect of a quantum bath on the topological edge modes of spin-1 quantum chains is studied. But the authors focus on the dependence of these edge modes on the global and partial symmetries of system-bath coupling and on the features of the quantum bath.
Posted Content

Topological Spin Liquid with Symmetry-Protected Edge States

TL;DR: In this article, the authors combine theoretical analysis and quantum Monte Carlo numerics on a frustrated spin model, and demonstrate that the presence of symmetry-protected gapless edge modes is a characteristic feature of the state, originating from the nontrivial symmetry fractionalization of the elementary excitations.

Average Symmetry-Protected Topological Phases

Ruochen Ma, +1 more
TL;DR: In this article , the authors introduced the notion of average SPT phases for disordered ensembles of quantum states, where quenched disorders locally break the symmetries, but restore the symmetry upon disorder averaging.
Posted Content

Robustness of critical U(1) spin liquids and emergent symmetries in tensor networks

TL;DR: In this article, the response of critical Resonating Valence Bond (RVB) spin liquids to doping with longer-range singlets was studied and it was shown that doping constitutes a relevant perturbation which immediately opens up a gap, contrary to previous observations.
References
More filters
Journal ArticleDOI

Quantum spin Hall effect in graphene

TL;DR: Graphene is converted from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator and the spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
Journal ArticleDOI

Quantum field theory and the Jones polynomial

TL;DR: In this paper, it was shown that 2+1 dimensional quantum Yang-Mills theory with an action consisting purely of the Chern-Simons term is exactly soluble and gave a natural framework for understanding the Jones polynomial of knot theory in three dimensional terms.
Journal ArticleDOI

Z-2 Topological Order and the Quantum Spin Hall Effect

TL;DR: The Z2 order of the QSH phase is established in the two band model of graphene and a generalization of the formalism applicable to multiband and interacting systems is proposed.
Journal ArticleDOI

The world as a hologram

TL;DR: In this article, the effects of particle growth with momentum on information spreading near black hole horizons were investigated. But the authors only considered the earliest times of the propagation of information near the horizon.
Journal ArticleDOI

Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations

TL;DR: In this article, the authors presented variational ground-state and excited-state wave functions which describe the condensation of a two-dimensional electron gas into a new state of matter.
Related Papers (5)