scispace - formally typeset
Open AccessJournal ArticleDOI

Symmetry protected topological orders and the group cohomology of their symmetry group

Reads0
Chats0
TLDR
In this paper, it was shown that the boundary excitations of SPT phases can be described by a nonlocal Lagrangian term that generalizes the Wess-Zumino-Witten term for continuous nonlinear σ models.
Abstract
Symmetry protected topological (SPT) phases are gapped short-range-entangled quantum phases with a symmetry G. They can all be smoothly connected to the same trivial product state if we break the symmetry. The Haldane phase of spin-1 chain is the first example of SPT phases which is protected by SO(3) spin rotation symmetry. The topological insulator is another example of SPT phases which are protected by U(1) and time-reversal symmetries. In this paper, we show that interacting bosonic SPT phases can be systematically described by group cohomology theory: Distinct d-dimensional bosonic SPT phases with on-site symmetry G (which may contain antiunitary time-reversal symmetry) can be labeled by the elements in H^(1+d)[G,UT(1)], the Borel (1+d)-group-cohomology classes of G over the G module UT(1). Our theory, which leads to explicit ground-state wave functions and commuting projector Hamiltonians, is based on a new type of topological term that generalizes the topological θ term in continuous nonlinear σ models to lattice nonlinear σ models. The boundary excitations of the nontrivial SPT phases are described by lattice nonlinear σ models with a nonlocal Lagrangian term that generalizes the Wess-Zumino-Witten term for continuous nonlinear σ models. As a result, the symmetry G must be realized as a non-on-site symmetry for the low-energy boundary excitations, and those boundary states must be gapless or degenerate. As an application of our result, we can use H^(1+d)[U(1)⋊ Z^(T)_(2),U_T(1)] to obtain interacting bosonic topological insulators (protected by time reversal Z2T and boson number conservation), which contain one nontrivial phase in one-dimensional (1D) or 2D and three in 3D. We also obtain interacting bosonic topological superconductors (protected by time-reversal symmetry only), in term of H^(1+d)[Z^(T)_(2),U_T(1)], which contain one nontrivial phase in odd spatial dimensions and none for even dimensions. Our result is much more general than the above two examples, since it is for any symmetry group. For example, we can use H1+d[U(1)×Z2T,UT(1)] to construct the SPT phases of integer spin systems with time-reversal and U(1) spin rotation symmetry, which contain three nontrivial SPT phases in 1D, none in 2D, and seven in 3D. Even more generally, we find that the different bosonic symmetry breaking short-range-entangled phases are labeled by the following three mathematical objects: (G_H,G_Ψ,H^(1+d)[G_Ψ,U_T(1)]), where G_H is the symmetry group of the Hamiltonian and G_Ψ the symmetry group of the ground states.

read more

Citations
More filters

Measurement-Prepared Quantum Criticality: from Ising model to gauge theory, and beyond

TL;DR: The conformal quantum critical points (CQCP) as mentioned in this paper can be obtained by performing general single-site measurements in appropriate basis on the cluster states in d ≥ 2, and the equal-time correlators of the said states are described by correlation functions of certain d-dimensional classical model at critical temperature.

Unsupervised interpretable learning of phases from many-qubit systems

TL;DR: It is shown how an unsupervised machine-learning technique can be used to understand short-range entangled many-qubit systems using data of local measurements, and opens the door for a first-principles application of hybrid algorithms that aim at strong interpretability without supervision.
Journal ArticleDOI

Extended quantum field theory, index theory and the parity anomaly

TL;DR: In this paper, a geometric description of the parity anomaly in fermionic systems coupled to background gauge and gravitational fields on odd-dimensional spacetimes is provided, and a geometric cobordism bicategory which incorporates general background fields in a stack is given, together with the theory of symmetric monoidal bicategories.
Journal ArticleDOI

Four revolutions in physics and the second quantum revolution -- a unification of force and matter by quantum information

TL;DR: The second quantum revolution as mentioned in this paper unifies matter/space with information, which is called quantum information (QI) revolution, and is the first quantum revolution that unifies quantum information.
Journal ArticleDOI

Dynamical mass generation in QED$_3$: A non-perturbative approach

TL;DR: In this paper, a nonperturbative description of the phenomenon of dynamical mass generation in the case of quantum electrodynamics in $2+1$ dimensions is provided, and it is shown that the physical Hilbert space of the asymptotic photon field is the same as that of the Maxwell-Chern-Simons.
References
More filters
Journal ArticleDOI

Quantum spin Hall effect in graphene

TL;DR: Graphene is converted from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator and the spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
Journal ArticleDOI

Quantum field theory and the Jones polynomial

TL;DR: In this paper, it was shown that 2+1 dimensional quantum Yang-Mills theory with an action consisting purely of the Chern-Simons term is exactly soluble and gave a natural framework for understanding the Jones polynomial of knot theory in three dimensional terms.
Journal ArticleDOI

Z-2 Topological Order and the Quantum Spin Hall Effect

TL;DR: The Z2 order of the QSH phase is established in the two band model of graphene and a generalization of the formalism applicable to multiband and interacting systems is proposed.
Journal ArticleDOI

The world as a hologram

TL;DR: In this article, the effects of particle growth with momentum on information spreading near black hole horizons were investigated. But the authors only considered the earliest times of the propagation of information near the horizon.
Journal ArticleDOI

Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations

TL;DR: In this article, the authors presented variational ground-state and excited-state wave functions which describe the condensation of a two-dimensional electron gas into a new state of matter.
Related Papers (5)