scispace - formally typeset
Journal ArticleDOI

The biplot graphic display of matrices with application to principal component analysis

K. R. Gabriel
- 01 Dec 1971 - 
- Vol. 58, Iss: 3, pp 453-467
TLDR
In this article, a matrix of rank two can be represented as a biplot, which consists of a vector for each row and a column, chosen so that any element of the matrix is exactly the inner product of the vectors corresponding to its row and to its column.
Abstract
SUMMARY Any matrix of rank two can be displayed as a biplot which consists of a vector for each row and a vector for each column, chosen so that any element of the matrix is exactly the inner product of the vectors corresponding to its row and to its column. If a matrix is of higher rank, one may display it approximately by a biplot of a matrix of rank two which approximates the original matrix. The biplot provides a useful tool of data analysis and allows the visual appraisal of the structure of large data matrices. It is especially revealing in principal component analysis, where the biplot can show inter-unit distances and indicate clustering of units as well as display variances and correlations of the variables. Any matrix may be represented by a vector for each row and another vector for each column, so chosen that the elements of the matrix are the inner products of the vectors representing the corresponding rows and columns. This is conceptually helpful in understanding properties of matrices. When the matrix is of rank 2 or 3, or can be closely approximated by a matrix of such rank, the vectors may be plotted or modelled and the matrix representation inspected physically. This is of obvious practical interest for the analysis of large matrices. Any n x m matrix Y of rank r can be factorized as

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis

TL;DR: In this article, a new multivariate analysis technique, called canonical correspondence analysis (CCA), was developed to relate community composition to known variation in the environment, where ordination axes are chosen in the light of known environmental variables by imposing the extra restriction that the axes be linear combinations of environmental variables.
Journal ArticleDOI

The ade4 Package: Implementing the Duality Diagram for Ecologists

TL;DR: The theory of the duality diagram is presented and its implementation in ade4 is discussed, which follows the tradition of the French school of "Analyse des Donnees" and is based on the use of theDuality diagram.
Journal ArticleDOI

Principal component analysis: a review and recent developments

TL;DR: The basic ideas of PCA are introduced, discussing what it can and cannot do, and some variants of the technique have been developed that are tailored to various different data types and structures.
Journal ArticleDOI

Ecologically meaningful transformations for ordination of species data

TL;DR: Transitions are proposed for species data tables which allow ecologists to use ordination methods such as PCA and RDA for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases.
References
More filters
Book

Linear statistical inference and its applications

TL;DR: Algebra of Vectors and Matrices, Probability Theory, Tools and Techniques, and Continuous Probability Models.
Journal ArticleDOI

Linear Statistical Inference and its Applications

TL;DR: The theory of least squares and analysis of variance has been studied in the literature for a long time, see as mentioned in this paper for a review of some of the most relevant works. But the main focus of this paper is on the analysis of variance.
Journal ArticleDOI

Singular value decomposition and least squares solutions

TL;DR: The decomposition of A is called the singular value decomposition (SVD) and the diagonal elements of ∑ are the non-negative square roots of the eigenvalues of A T A; they are called singular values.