scispace - formally typeset
Open AccessJournal ArticleDOI

The expression of TNF alpha by human muscle. Relationship to insulin resistance.

TLDR
TNF is expressed in human muscle, and is expressed at a higher level in the muscle tissue and in the cultured muscle cells from insulin resistant and diabetic subjects, which suggest another mechanism by which TNF may play an important role in human insulin resistance.
Abstract
TNFalpha is orverexpressed in the adipose tissue of obese rodents and humans, and is associated with insulin resistance. To more closely link TNF expression with whole body insulin action, we examined the expression of TNF by muscle, which is responsible for the majority of glucose uptake in vivo. Using RT-PCR, TNF was detected in human heart, in skeletal muscle from humans and rats, and in cultured human myocytes. Using competitive RT-PCR, TNF was quantitated in the muscle biopsy specimens from 15 subjects whose insulin sensitivity had been characterized using the glucose clamp. technique. TNF expression in the insulin resistant subjects and the diabetic patients was fourfold higher than in the insulin sensitive subjects, and there was a significant inverse linear relationship between maximal glucose disposal rate and muscle TNF (r = -0.60, P < 0.02). In nine subjects, muscle cells from vastus lateralis muscle biopsies were placed into tissue culture for 4 wk, and induced to differentiate into myotubes. TNF was secreted into the medium from these cells, and cells from diabetic patients expressed threefold more TNF than cells from nondiabetic subjects. Thus, TNF is expressed in human muscle, and is expressed at a higher level in the muscle tissue and in the cultured muscle cells from insulin resistant and diabetic subjects. These data suggest another mechanism by which TNF may play an important role in human insulin resistance.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Obesity is associated with macrophage accumulation in adipose tissue

TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Journal ArticleDOI

Inflammation and metabolic disorders

TL;DR: Dysfunction of the immune response and metabolic regulation interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease.
Journal ArticleDOI

Inflammation, stress, and diabetes

TL;DR: The molecular and cellular underpinnings of obesity-induced inflammation and the signaling pathways at the intersection of metabolism and inflammation that contribute to diabetes are discussed.
Journal ArticleDOI

Inflammatory Mechanisms in Obesity

TL;DR: The discovery that obesity itself results in an inflammatory state in metabolic tissues ushered in a research field that examines the inflammatory mechanisms in obesity, and metaflammation is summarized, defined as low-grade, chronic inflammation orchestrated by metabolic cells in response to excess nutrients and energy.
Journal ArticleDOI

The anti-inflammatory effect of exercise

TL;DR: It is suggested that myokines may be involved in mediating the health-beneficial effects of exercise and that these in particular are involved in the protection against chronic diseases associated with low-grade inflammation such as diabetes and cardiovascular diseases.
References
More filters
Journal ArticleDOI

Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction

TL;DR: A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described, providing a pure preparation of undegraded RNA in high yield and can be completed within 4 h.
Journal ArticleDOI

Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance

TL;DR: A role for TNF-alpha in obesity and particularly in the insulin resistance and diabetes that often accompany obesity is indicated.
Journal ArticleDOI

Glucose clamp technique: a method for quantifying insulin secretion and resistance.

TL;DR: Methods for the quantification of beta-cell sensitivity to glucose (hyperglycemic clamp technique) and of tissue sensitivity to insulin (euglycemic insulin clamp technique] are described.
Journal ArticleDOI

Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.

TL;DR: A role for the abnormal regulation of this cytokine in the pathogenesis of obesity-related insulin resistance is suggested as well as the effects of weight reduction by dietary treatment of obesity on the adipose expression of TNF-alpha mRNA.
Journal ArticleDOI

The Effect of Insulin on the Disposal of Intravenous Glucose: Results from Indirect Calorimetry and Hepatic and Femoral Venous Catheterization

TL;DR: The results suggest that the ability of higher doses of insulin to further stimulate glucose metabolism is primarily the result of increased glucose storage by peripheral tissues, most likely muscle.
Related Papers (5)