scispace - formally typeset
Journal ArticleDOI

The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function.

Rodolfo R. Llinás
- 23 Dec 1988 - 
- Vol. 242, Iss: 4886, pp 1654-1664
Reads0
Chats0
TLDR
It is proposed that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.
Abstract
This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhythmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.

read more

Citations
More filters
Journal ArticleDOI

The human brain is intrinsically organized into dynamic, anticorrelated functional networks

TL;DR: It is suggested that both task-driven neuronal responses and behavior are reflections of this dynamic, ongoing, functional organization of the brain, featuring the presence of anticorrelated networks in the absence of overt task performance.
Journal ArticleDOI

Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.

TL;DR: Recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity are reviewed.
Journal ArticleDOI

Neuronal Oscillations in Cortical Networks

TL;DR: Recent findings indicate that network oscillations bias input selection, temporally link neurons into assemblies, and facilitate synaptic plasticity, mechanisms that cooperatively support temporal representation and long-term consolidation of information.
Journal ArticleDOI

The brainweb: phase synchronization and large-scale integration.

TL;DR: It is argued that the most plausible candidate is the formation of dynamic links mediated by synchrony over multiple frequency bands.
Book

Rhythms of the brain

TL;DR: The brain's default state: self-organized oscillations in rest and sleep, and perturbation of the default patterns by experience.
References
More filters
Journal ArticleDOI

A quantitative description of membrane current and its application to conduction and excitation in nerve

TL;DR: This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre by putting them into mathematical form and showing that they will account for conduction and excitation in quantitative terms.
Journal ArticleDOI

Impulses and Physiological States in Theoretical Models of Nerve Membrane

TL;DR: Van der Pol's equation for a relaxation oscillator is generalized by the addition of terms to produce a pair of non-linear differential equations with either a stable singular point or a limit cycle, which qualitatively resembles Bonhoeffer's theoretical model for the iron wire model of nerve.
Journal ArticleDOI

Three types of neuronal calcium channel with different calcium agonist sensitivity.

TL;DR: Evidence is reported for the coexistence of three types of Ca channel in sensory neurones of the chick dorsal root ganglion and the dihydropyridine Ca agonist Bay K 8644 strongly increases the opening probability of L-, but not T- or N-type channels.
Journal ArticleDOI

The functional states of the thalamus and the associated neuronal interplay.

TL;DR: Preface .............................................................. 649 http://tinyurl.com/y7s7s3s3d8/
Related Papers (5)