scispace - formally typeset
Journal ArticleDOI

The shear-induced migration of particles in concentrated suspensions

David T. Leighton, +1 more
- 01 Sep 1987 - 
- Vol. 181, Iss: -1, pp 415-439
TLDR
In this article, it was shown that shear-induced migration of particles out of the sheared Couette gap and into the fluid reservoir, which reduces the particle concentration in the gap and thereby the observed viscosity, is consistent with a gap-limited shearinduced diffusion process normal to the plane of shear, with the relevant diffusion coefficient being proportional to the applied shear rate.
Abstract
In the course of viscometric measurements of concentrated suspensions of spheres in Newtonian fluids using a Couette device, Gadala-Maria & Acrivos (1980) observed a decrease in the suspension viscosity after long periods of shearing even though the viscosity of the pure suspending fluid remained constant under identical conditions. In the present work we demonstrate that this phenomenon is due to the shear-induced migration of particles out of the sheared Couette gap and into the fluid reservoir, which reduces the particle concentration in the gap and thereby the observed viscosity. We show further that this rate of viscosity decrease is consistent with a gap-limited shear-induced diffusion process normal to the plane of shear, with the relevant diffusion coefficient being proportional to is the applied shear rate.Additional experiments also uncovered a new phenomenon - a short-term increase in the viscosity upon initial shearing of a suspension in a Couette device - which was attributed to the diffusive migration of particles across the width of the Couette gap and thus was used to infer values of the corresponding diffusion coefficient within the plane of shear parallel to gradients in fluid velocity.In the theoretical part we demonstrate that the particle migrations that led to these observed phenomena may be explained in terms of the irreversible interparticle interactions that occur in these suspensions. From simple arguments, these interactions are shown to lead to effective diffusivities both normal to the plane of shear and normal to the direction of fluid motion within the plane of shear whose estimated magnitudes are comparable with those that were inferred from the experimental measurements. Furthermore, these interactions should induce, within a shear flow, particle drifts from regions of high to low shear stress, which are estimated to be of sufficient intensity to account for the observed initial viscosity increase mentioned above.

read more

Citations
More filters
Journal ArticleDOI

Particle migration using local variation of the viscosity (LVOV) model in flow of a non-Newtonian fluid for ceramic tape casting

TL;DR: In this article, a local variation of the viscosity (LVOV) model as a function of the particle volume fraction is introduced and taken into account in the advection and the settling of the particles in the flow field.
Journal ArticleDOI

Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

TL;DR: In this article, the authors measured the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size, and they found that the overall flow rate as well as particle concentration has a direct influence on the slip.
Dissertation

Modelling and Simulation of Membrane Bioreactors for Wastewater Treatment

Tomasz Janus
TL;DR: In this paper, two new activated sludge models with SMP and extracellular polymeric substances (EPSs) as additional components have been formulated, described, and simulated.
Journal ArticleDOI

Staged inertial microfluidic focusing for complex fluid enrichment

TL;DR: In this article, a staged device capable of high throughput particle and cell concentration and efficient single-pass complex fluid enrichment is presented, where straight and asymmetrically curved microchannels are combined in series to accelerate focusing dynamics and improve concentration efficiency.
Journal ArticleDOI

Two-dimensional simulation of red blood cell motion near a wall under a lateral force.

TL;DR: The motion of a red blood cell suspended in a linear shear flow adjacent to a fixed boundary subject to an applied lateral force directed toward the boundary is simulated, and the cell is predicted to execute tank-treading motions at normal physiological hematocrit levels, with the possibility of tumbling at lower hematOCrit levels.
References
More filters
Journal ArticleDOI

Inertial migration of rigid spheres in two-dimensional unidirectional flows

TL;DR: In this article, the Segre-Silberberg effect of inertia-induced lateral migration of a neutrally buoyant rigid sphere in a Newtonian fluid is studied theoretically for simple shear flow and for two-dimensional Poiseuille flow.
Journal ArticleDOI

Shear‐Induced Structure in a Concentrated Suspension of Solid Spheres

TL;DR: In this article, a Couette device of a R•17 Weissenberg Rheogoniometer with suspensions of polystyrene spheres, 40-50 μm in diameter, suspended in a mixture of silicone oils at volume fractions 0⩽φ0.55 was used for steady and transient shear measurements.
Journal ArticleDOI

Measurement of shear-induced self-diffusion in concentrated suspensions of spheres

TL;DR: In this paper, a technique for determining the coefficient of shear-induced particle self-diffusion in concentrated suspensions of solid spheres, which relies on the fact that this coefficient can be computed from the measured variations in the time taken by a single marked particle in the suspension to complete successive circuits in a Couette device, was presented.
Journal ArticleDOI

Self-diffusion of particles in shear flow of a suspension

TL;DR: In this paper, a self-diffusion coefficient for lateral dispersion of spherical and disk-like particles in linear shear flow of a slurry at very low Reynolds number was determined experimentally.
Journal ArticleDOI

The kinetics of flowing dispersions

TL;DR: In this article, the velocity profiles of dilute suspensions of rigid spheres in Newtonian liquids undergoing Couette or Poiseuille flow were found to be identical with those predicted by the theory with no particles present.
Related Papers (5)