scispace - formally typeset
Open AccessJournal ArticleDOI

Theory of ultracold atomic Fermi gases

Reads0
Chats0
TLDR
In this article, the physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective, focusing on the effect of interactions that bring the gas into a superfluid phase at low temperature.
Abstract
The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of interactions that play a crucial role, bringing the gas into a superfluid phase at low temperature. In these dilute systems, interactions are characterized by a single parameter, the $s$-wave scattering length, whose value can be tuned using an external magnetic field near a broad Feshbach resonance. The BCS limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers, and the unitary limit of large scattering length are important regimes exhibited by interacting Fermi gases. In particular, the BEC and the unitary regimes are characterized by a high value of the superfluid critical temperature, on the order of the Fermi temperature. Different physical properties are discussed, including the density profiles and the energy of the ground-state configurations, the momentum distribution, the fraction of condensed pairs, collective oscillations and pair-breaking effects, the expansion of the gas, the main thermodynamic properties, the behavior in the presence of optical lattices, and the signatures of superfluidity, such as the existence of quantized vortices, the quenching of the moment of inertia, and the consequences of spin polarization. Various theoretical approaches are considered, ranging from the mean-field description of the BCS-BEC crossover to nonperturbative methods based on quantum Monte Carlo techniques. A major goal of the review is to compare theoretical predictions with available experimental results.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Vortex arrays in neutral trapped Fermi gases through the BCS–BEC crossover

TL;DR: The formation of vortex arrays in rotating Fermi gases is not limited to ultracold gases but may be relevant in nuclei and neutron stars, so it is important to be able to calculate their properties in a realistic fashion as discussed by the authors.
Journal ArticleDOI

Collapse in the nonlocal nonlinear Schrödinger equation

TL;DR: In this paper, the authors studied the effect of singular non-local kernels in arbitrary dimension using Lyapunoff's method and virial identities, and showed that the presence of local repulsive nonlinearity can prevent collapse in those cases.
Journal ArticleDOI

Fermi-Liquid Description of a Single-Component Fermi Gas with p -Wave Interactions

TL;DR: Using the Landau transport equation, it is shown that undamped zero sound only appears in the second order in scattering volume, in contrast to the s-wave case.
Journal ArticleDOI

Brunnian and Efimov N-Body States

TL;DR: In this article, the scaling relations established for two-and three-body structures of nuclear halos were reviewed and the difference between the two extremes of weak binding named Efimov and Brunnian states were discussed.
References
More filters
Journal ArticleDOI

Theory of Superconductivity

TL;DR: In this article, a theory of superconductivity is presented, based on the fact that the interaction between electrons resulting from virtual exchange of phonons is attractive when the energy difference between the electrons states involved is less than the phonon energy, and it is favorable to form a superconducting phase when this attractive interaction dominates the repulsive screened Coulomb interaction.
Journal ArticleDOI

Effects of Configuration Interaction on Intensities and Phase Shifts

TL;DR: In this paper, a theoretical analysis of the shape of the 2s2p^{1}P resonance of He observed in the inelastic scattering of electrons is presented. But the analysis is restricted to the case of one discrete level with two or more continua and of a set of discrete levels with one continuum.
Journal ArticleDOI

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

TL;DR: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled and exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
Book

The Nuclear Many-body Problem

TL;DR: In this paper, the Hartree-Fock method pairing correlations and superfluid nuclei was used to restore broken symmetries in the generator coordinate method of the generator-coordinate method.
Journal ArticleDOI

Electron correlations in narrow energy bands

TL;DR: In this paper, the Hartree-Fock approximation of the correlation problem for the d-and f-bands was applied to a simple, approximate model for the interaction of electrons in narrow energy bands.
Related Papers (5)