scispace - formally typeset
Journal ArticleDOI

Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS

TLDR
In this paper, three methods including MARS, artificial neural network (ANN) with Levenberg-Marquardt for training and GMDH are employed for thermal conductivity of the nanofluids containing ZnO particles.
Abstract
Nanofluids are attractive alternatives for the current heat transfer fluids due to their remarkably higher thermal conductivity which leads to the improved thermal performance. Nanofluids are applicable in porous media for improving their heat transfer. Proposing accurate models for forecasting this feature of nanofluids can facilitate and accelerate the design and modeling of nanofluids’ thermal mediums with porous structure. In the present study, three methods including MARS, artificial neural network (ANN) with Levenberg–Marquardt for training and GMDH are employed for thermal conductivity of the nanofluids containing ZnO particles. The confidence of the models is compared according to various criteria. It is observed that the most accurate model is obtained by using ANN with Levenberg–Marquardt followed by GMDH and MARS. R2 of the mentioned models are 0.9987, 0.9980 and 0.9879, respectively. Finally, sensitivity analysis is performed to find the importance of the input variables and it is concluded that the thermal conductivity of the base fluids has the highest importance followed by volume fraction of solid phase, size of particles and temperature.

read more

Citations
More filters
Journal ArticleDOI

A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage

TL;DR: In this article, a detailed illustration of phase change materials and their working principle, different types, and properties are provided, and a characteristic example of PCM in solar energy storage and the design of PCMs are reviewed and analyzed.
Journal ArticleDOI

Applications of nanofluids containing carbon nanotubes in solar energy systems: A review

TL;DR: In this paper, the thermal conductivity of nanofluids with carbon nanotubes (CNTs) is investigated and suggested for future studies in this field which can lead to further enhancement in the efficiency of solar systems incorporating the investigated nanof-luids.
Journal ArticleDOI

Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System

TL;DR: In this paper , a review of machine learning techniques employed in the nanofluid-based renewable energy system, as well as new developments in machine learning research, is presented.
Journal ArticleDOI

A Review on the Control Parameters of Natural Convection in Different Shaped Cavities with and without Nanofluid

TL;DR: A review of recent natural convection studies can be found in this article, where the authors classified the articles based on effective parameters such as magnetic forces, fin, porous media and cavity angles.
References
More filters
Journal ArticleDOI

Multivariate Adaptive Regression Splines

TL;DR: In this article, a new method is presented for flexible regression modeling of high dimensional data, which takes the form of an expansion in product spline basis functions, where the number of basis functions as well as the parameters associated with each one (product degree and knot locations) are automatically determined by the data.
Journal ArticleDOI

Multivariate adaptive regression splines and neural network models for prediction of pile drivability

TL;DR: This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationships between the various parameters.
Journal ArticleDOI

Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation☆

TL;DR: In this article, two new correlations for predicting the thermal conductivity of studied hybrid nanofluids, in terms of solid concentration and temperature, are proposed that use an artificial neural network (ANN) and are based on experimental data.
Journal ArticleDOI

A review of thermal conductivity of various nanofluids

TL;DR: In this article, several experimental and theoretical studies conducted on the thermal conductivity of nanofluids are represented and investigated based on the reviewed studies, various factors affect thermal conductivities such as temperature, the shape of nanoparticles, concentration and etc.
Journal ArticleDOI

Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids

TL;DR: In this paper, water-based nanofluids have been used to enhance the heat transfer performance of a car radiator by adding ZnO nanoparticles to base fluid in different volumetric concentrations (0.01, 0.08), 0.2% and 0.3%).
Related Papers (5)