scispace - formally typeset
Open AccessJournal Article

Time synchronization in wireless sensor networks

TLDR
In this article, a service model for time synchronization is proposed to better support the broad range of application requirements seen in sensor networks, while meeting the unique resource constraints found in such systems.
Abstract
Recent advances in miniaturization and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low-power sensors and actuators. Time synchronization is a critical piece of infrastructure in any distributed system, but wireless sensor networks make particularly extensive use of synchronized time. Almost any form of sensor data fusion or coordinated actuation requires synchronized physical time for reasoning about events in the physical world. However, while the clock accuracy and precision requirements are often stricter in sensor networks than in traditional distributed systems, energy and channel constraints limit the resources available to meet these goals. New approaches to time synchronization can better support the broad range of application requirements seen in sensor networks, while meeting the unique resource constraints found in such systems. We first describe the design principles we have found useful in this problem space: tiered and multi-modal architectures are a better fit than a single solution forced to solve all problems; tunable methods allow synchronization to be more finely tailored to problem at hand; peer-to-peer synchronization eliminates the problems associated with maintaining a global timescale. We propose a new service model for time synchronization that provides a much more natural expression of these techniques: explicit timestamp conversions . We describe the implementation and characterization of several synchronization methods that exemplify our design principles. Reference-Broadcast Synchronization achieves high precision at low energy cost by leveraging the broadcast property inherent to wireless communication. A novel multi-hop algorithm allows RBS timescales to be federated across broadcast domains. Post-Facto Synchronization can make systems significantly more efficient by relaxing the traditional constraint that clocks must be kept in continuous synchrony. Finally, we describe our experience in applying our new methods to the implementation of a number of research and commercial sensor network applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Directed diffusion for wireless sensor networking

TL;DR: In this article, the authors explore and evaluate the use of directed diffusion for a simple remote-surveillance sensor network analytically and experimentally and demonstrate that directed diffusion can achieve significant energy savings and can outperform idealized traditional schemes under the investigated scenarios.
Journal ArticleDOI

Fine-grained network time synchronization using reference broadcasts

TL;DR: Reference Broadcast Synchronization (RBS) as discussed by the authors is a scheme in which nodes send reference beacons to their neighbors using physical-layer broadcasts, and receivers use their arrival time as a point of reference for comparing their clocks.
Proceedings ArticleDOI

The flooding time synchronization protocol

TL;DR: The FTSP achieves its robustness by utilizing periodic flooding of synchronization messages, and implicit dynamic topology update and comprehensive error compensation including clock skew estimation, which is markedly better than that of the existing RBS and TPSN algorithms.
Proceedings ArticleDOI

Timing-sync protocol for sensor networks

TL;DR: It is argued that TPSN roughly gives a 2x better performance as compared to Reference Broadcast Synchronization (RBS) and verify this by implementing RBS on motes and use simulations to verify its accuracy over large-scale networks.
Journal Article

Maintaining Sensing Coverage and Connectivity in Large Sensor Networks.

TL;DR: A decentralized density control algorithm, Optimal Geographical Density Control (OGDC), is devised for density control in large scale sensor networks and can maintain coverage as well as connectivity, regardless of the relationship between the radio range and the sensing range.
References
More filters
Journal ArticleDOI

Wireless sensor networks: a survey

TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.
Book ChapterDOI

Time, clocks, and the ordering of events in a distributed system

TL;DR: In this paper, the concept of one event happening before another in a distributed system is examined, and a distributed algorithm is given for synchronizing a system of logical clocks which can be used to totally order the events.
Journal ArticleDOI

Time, clocks, and the ordering of events in a distributed system

TL;DR: In this article, the concept of one event happening before another in a distributed system is examined, and a distributed algorithm is given for synchronizing a system of logical clocks which can be used to totally order the events.
Proceedings ArticleDOI

Directed diffusion: a scalable and robust communication paradigm for sensor networks

TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Proceedings ArticleDOI

Wireless sensor networks for habitat monitoring

TL;DR: An in-depth study of applying wireless sensor networks to real-world habitat monitoring and an instance of the architecture for monitoring seabird nesting environment and behavior is presented.
Related Papers (5)