scispace - formally typeset
Journal ArticleDOI

TOPEX/POSEIDON tides estimated using a global inverse model

Reads0
Chats0
Abstract
Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean tides, which are aliased in the raw data. The tides are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from tide gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean tide gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better agreement with altimetric and ground truth data, than previously proposed tidal models. Relative to the 'default' tidal corrections provided with the TOPEX/POSEIDON GDR, the inverse solution reduces crossover difference variances significantly (approximately 20-30%), even though only a small number of free parameters (approximately equal to 1000) are actually fit to the crossover data.

read more

Citations
More filters
Journal ArticleDOI

Efficient Inverse Modeling of Barotropic Ocean Tides

TL;DR: In this paper, a relocatable system for generalized inverse (GI) modeling of barotropic ocean tides is described, where the GI penalty functional is minimized using a representer method, which requires repeated solution of the forward and adjoint linearized shallow water equations.
Book

Atmospheric Modeling, Data Assimilation and Predictability

TL;DR: A comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability.
Journal ArticleDOI

Atmospheric Modeling, Data Assimilation, and Predictability

Christopher K. Wikle
- 01 Nov 2005 - 
TL;DR: This monograph is an outstanding monograph on current research on skewelliptical models and its generalizations and does an excellent job presenting the depth of methodological research as well as the breath of application regimes.
Journal ArticleDOI

Modelling the global ocean tides: modern insights from FES2004

TL;DR: A review of the state-of-the-art in the field of finite element solutions (FES) atlases can be found in this paper, where the authors introduce the FES2004 tidal atlas and validate the model against in situ and satellite data.
Journal ArticleDOI

Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan

TL;DR: In this article, a global ocean tide model with a spatial resolution of 0.5° has been estimated by assimilating about 5 years of TOPEX/POSEIDON altimeter data into barotropic hydrodynamical model.
References
More filters
Book

Elliptic Partial Differential Equations of Second Order

TL;DR: In this article, Leray-Schauder and Harnack this article considered the Dirichlet Problem for Poisson's Equation and showed that it is a special case of Divergence Form Operators.
Book

Spatial statistics

Book

Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation

TL;DR: In this paper, the least-squares (l 2 -norm) and the Minimax (l #-norm) Criterion are introduced. But they do not cover the general discrete inverse problem.
Journal ArticleDOI

Deformation of the Earth by surface loads

TL;DR: In this article, the static deformation of an elastic half-space by surface pressure is reviewed and a brief mention is made of methods for solving the problem when the medium is plane-strategized, but the major emphasis is on the solution for spherical, radially stratified, gravitating earth models.
Related Papers (5)