scispace - formally typeset
Open AccessPosted Content

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

TLDR
This work introduces a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrates that they are a strong candidate for unsupervised learning.
Abstract
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. Additionally, we use the learned features for novel tasks - demonstrating their applicability as general image representations.

read more

Citations
More filters
Proceedings Article

Improved techniques for training GANs

TL;DR: In this article, a variety of new architectural features and training procedures are applied to the generative adversarial networks (GANs) framework and achieved state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN.
Posted Content

Least Squares Generative Adversarial Networks

TL;DR: This paper proposes the Least Squares Generative Adversarial Networks (LSGANs) which adopt the least squares loss function for the discriminator, and shows that minimizing the objective function of LSGAN yields minimizing the Pearson X2 divergence.
Proceedings ArticleDOI

StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation

TL;DR: StarGAN as discussed by the authors proposes a unified model architecture to perform image-to-image translation for multiple domains using only a single model, which leads to superior quality of translated images compared to existing models as well as the capability of flexibly translating an input image to any desired target domain.
Proceedings Article

Conditional image synthesis with auxiliary classifier GANs

TL;DR: A variant of GANs employing label conditioning that results in 128 x 128 resolution image samples exhibiting global coherence is constructed and it is demonstrated that high resolution samples provide class information not present in low resolution samples.
Proceedings Article

InfoGAN: interpretable representation learning by information maximizing generative adversarial nets

TL;DR: InfoGAN as mentioned in this paper is an information-theoretic extension to the GAN that is able to learn disentangled representations in a completely unsupervised manner, and it also discovers visual concepts that include hair styles, presence of eyeglasses, and emotions on the CelebA face dataset.
References
More filters
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Posted Content

Adam: A Method for Stochastic Optimization

TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Posted Content

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Batch Normalization as mentioned in this paper normalizes layer inputs for each training mini-batch to reduce the internal covariate shift in deep neural networks, and achieves state-of-the-art performance on ImageNet.
Book ChapterDOI

Visualizing and Understanding Convolutional Networks

TL;DR: A novel visualization technique is introduced that gives insight into the function of intermediate feature layers and the operation of the classifier in large Convolutional Network models, used in a diagnostic role to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark.