scispace - formally typeset
Search or ask a question

Showing papers on "Agmatine published in 2019"


Journal ArticleDOI
TL;DR: How diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes are discussed are discussed.
Abstract: The polyamines putrescine, spermidine, and spermine are widely distributed polycationic compounds essential for cellular functions. Intracellular polyamine pools are tightly regulated by a complex regulatory mechanism involving de novo biosynthesis, catabolism, and transport across the plasma membrane. In mammals, both the production of polyamines and their uptake from the extracellular space are controlled by a set of proteins named antizymes and antizyme inhibitors. Dysregulation of polyamine levels has been implicated in a variety of human pathologies, especially cancer. Additionally, decreases in the intracellular and circulating polyamine levels during aging have been reported. The differences in the polyamine content existing among tissues are mainly due to the endogenous polyamine metabolism. In addition, a part of the tissue polyamines has its origin in the diet or their production by the intestinal microbiome. Emerging evidence has suggested that exogenous polyamines (either orally administrated or synthetized by the gut microbiota) are able to induce longevity in mice, and that spermidine supplementation exerts cardioprotective effects in animal models. Furthermore, the administration of either spermidine or spermine has been shown to be effective for improving glucose homeostasis and insulin sensitivity and reducing adiposity and hepatic fat accumulation in diet-induced obesity mouse models. The exogenous addition of agmatine, a cationic molecule produced through arginine decarboxylation by bacteria and plants, also exerts significant effects on glucose metabolism in obese models, as well as cardioprotective effects. In this review, we will discuss some aspects of polyamine metabolism and transport, how diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes.

108 citations


Journal ArticleDOI
TL;DR: The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of l-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders.
Abstract: The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.

30 citations


Journal ArticleDOI
TL;DR: The cumulative evidences of preclinical studies support the possible use of agmatine as an agent for neuronal damage and neurodegenerative diseases, however, it will be hasty to assert and promote agMatine as a novel therapeutic agent for neuroprotection.
Abstract: Agmatine, an endogenous polyamine in CNS, is derived from arginine by dearboxylation. Like polyamines, agmatine has been studied for its neuroprotetive effects. At present, a large body of experimental evidences has been gathered that demonstrate the neuroprotective effects of agmatine. The neuroprotective effects have been observed in various CNS cell lines and animal models against the excitotocity, oxidative damage, corticosteroidid induced neurotoxicity, ischemic/hypoxic or oxygen-glucose deprivation toxicity, spinal cord injury and traumatic brain injury. The studies have been extended to rescue of retinal ganglion cells from toxicities. The mechanistic studies suggest that neuroprotection offered by agmatine can be assigned to its multimolecular biological effects. These include its action as glutamatergic receptor antagonist, α2-adrenoceptor agonist, imidazoline binding site ligand, NOS inhibitor, ADP ribosylation inhibitor, and blocker of ATP-sensitive potassium and voltage-gated calcium channels, anti-apoptotic and antioxidant. Its action as regulator for polyamine synthesis, insulin release assists the neuroprotection. The cumulative evidences of preclinical studies support the possible use of agmatine as an agent for neuronal damage and neurodegenerative diseases. However, it will be hasty to assert and promote agmatine as a novel therapeutic agent for neuroprotection. The review is focused on the role of agmatine in different types and mechanisms of neural injuries. The aspects of concern like dose range, pharmacokinetics of exogenous agmatine, levels of endogenous agmatine during events of injury etc. has to be addressed.

25 citations


Journal ArticleDOI
TL;DR: The induced accumulation of two groups of phenylamides, cinnamic acid amides with indole amines, and p-coumaric acid amide with putrescine and agmatine related amines represents a major metabolic response of wheat to pathogen infection.

24 citations


Journal ArticleDOI
TL;DR: Agmatine significantly prevented the effect of Aβ exposure on cell viability and caspase-3 assays and considerably restored Aβ-induced decline of phospho-Akt and phosphO-GSK and blocked A β-induced increase ofospho-ERK and TNF-alpha.
Abstract: β-Amyloid peptide (Aβ), the major element of senile plaques in Alzheimer’s disease (AD), has been found to accumulate in brain regions critical for memory and cognition. Deposits of Aβ trigger neurotoxic events which lead to neural apoptotic death. The present study examined whether agmatine, an endogenous polyamine formed by the decarboxylation of l-arginine, possesses a neuroprotective effect against Aβ-induced toxicity. Primary rat hippocampal cells extracted from the brains of 18–19-day-old embryos were exposed to 10 µM of Aβ (25–35) in the absence or presence of agmatine at 150 or 250 µM. Additionally, the involvement of Akt (Protein Kinae B), GSK-3β (glycogen synthase kinase 3-β), ERK (Extracellular Signal-Regulated Kinase) and TNF-α (Tumor necrosis factor-α) in the agmatine protection against Aβ-induced neurotoxicity was investigated. Agmatine significantly prevented the effect of Aβ exposure on cell viability and caspase-3 assays. Furthermore, agmatine considerably restored Aβ-induced decline of phospho-Akt and phospho-GSK and blocked Aβ-induced increase of phospho-ERK and TNF-alpha. Taken together, these findings might shed light on the protective effect of agmatine as a potential therapeutic agent for AD.

23 citations


Journal ArticleDOI
TL;DR: The anticaries mechanisms of action of arginine and fluoride are distinct, whereas fluoride is thought to enhance resistance of tooth minerals to low pH and reduce acid production by supragingival oral biofilms.
Abstract: Caries lesions develop when acid production from bacterial metabolism of dietary carbohydrates outweighs the various mechanisms that promote pH homeostasis, including bacterial alkali production. Therapies that provide arginine as a substrate for alkali production in supragingival oral biofilms have strong anticaries potential. The objective of this study was to investigate the metabolic profile of site-specific supragingival plaque in response to the use of arginine (Arg: 1.5% arginine, fluoride-free) or fluoride (F: 1,100 ppm F/NaF) toothpastes. Eighty-three adults of different caries status were recruited and assigned to treatment with Arg or F for 12 wk. Caries lesions were diagnosed using International Caries Detection and Assessment System II, and plaque samples were collected from caries-free and carious tooth surfaces. Taxonomic profiles were obtained by HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing), and plaque metabolism was assessed by the levels of arginine catabolism via the arginine deiminase pathway (ADS), acidogenicity, and global metabolomics. Principal component analysis (PCA), partial least squares-discriminant analysis, analysis of variance, and random forest tests were used to distinguish metabolic profiles. Of the 509 active lesions diagnosed at baseline, 70 (14%) were inactive after 12 wk. Generalized linear model showed that enamel lesions were significantly more likely to become inactive compared to dentin lesions (P < 0.0001), but no difference was found when treatment with Arg was compared to F (P = 0.46). Arg significantly increased plaque ADS activity (P = 0.031) and plaque pH values after incubation with glucose (P = 0.001). F reduced plaque lactate production from endogenous sources (P = 0.02). PCA revealed differences between the metabolic profiles of plaque treated with Arg or F. Arg significantly affected the concentrations of 16 metabolites, including phenethylamine, agmatine, and glucosamine-6-phosphate (P < 0.05), while F affected the concentrations of 9 metabolites, including phenethylamine, N-methyl-glutamate, and agmatine (P < 0.05). The anticaries mechanisms of action of arginine and fluoride are distinct. Arginine metabolism promotes biofilm pH homeostasis, whereas fluoride is thought to enhance resistance of tooth minerals to low pH and reduce acid production by supragingival oral biofilms.

21 citations


Journal ArticleDOI
TL;DR: In the plant-beneficial bacterium Pseudomonas putida KT2440, the amino acid l-arginine is a metabolic connector between iron capture and oxidative stress.
Abstract: Iron is essential for most life forms. Under iron-limiting conditions, many bacteria produce and release siderophores-molecules with high affinity for iron-which are then transported into the cell in their iron-bound form, allowing incorporation of the metal into a wide range of cellular processes. However, free iron can also be a source of reactive oxygen species that cause DNA, protein, and lipid damage. Not surprisingly, iron capture is finely regulated and linked to oxidative-stress responses. Here, we provide evidence indicating that in the plant-beneficial bacterium Pseudomonas putida KT2440, the amino acid l-arginine is a metabolic connector between iron capture and oxidative stress. Mutants defective in arginine biosynthesis show reduced production and release of the siderophore pyoverdine and altered expression of certain pyoverdine-related genes, resulting in higher sensitivity to iron limitation. Although the amino acid is not part of the siderophore side chain, addition of exogenous l-arginine restores pyoverdine release in the mutants, and increased pyoverdine production is observed in the presence of polyamines (agmatine and spermidine), of which arginine is a precursor. Spermidine also has a protective role against hydrogen peroxide in P. putida, whereas defects in arginine and pyoverdine synthesis result in increased production of reactive oxygen species.IMPORTANCE The results of this study show a previously unidentified connection between arginine metabolism, siderophore turnover, and oxidative stress in Pseudomonas putida Although the precise molecular mechanisms involved have yet to be characterized in full detail, our data are consistent with a model in which arginine biosynthesis and the derived pathway leading to polyamine production function as a homeostasis mechanism that helps maintain the balance between iron uptake and oxidative-stress response systems.

20 citations


Journal ArticleDOI
Guoyue Liu1, Hong Mei1, Miao Chen1, Song Qin1, Kang Li1, Wei Zhang1, Tao Chen1 
TL;DR: Agmatine protects hyperoxia-induced lung injury by decreasing the expression of lncRNA gadd7 to regulate MFN1 expression, which is commonly seen in the treatment of refractory hypoxemia.

17 citations


Journal ArticleDOI
TL;DR: Fundamental pre-clinical evidence is provided that daily oral delivery of agmatine sulfate to both WT and Tg mice is safe and well tolerated and its effect on brain putrescine appears to be dependent on the time post-treatment.
Abstract: Agmatine (decarboxylated arginine) exerts numerous central nervous system (CNS) dependent pharmacological effects and may potentially modulate altered neurochemistry seen in neurological disorders. In preclinical studies, injection has been the predominant route of systemic administration. However, a significant translational step would be the use of oral agmatine treatment at therapeutic doses and better understanding of L-arginine metabolic profiles in the CNS post-treatment. The present study systematically investigated the tolerability, safety and brain-plasma neurochemistry following daily oral agmatine sulfate treatment (via gavage) to wild-type (WT) mice up to 900 mg/kg for one week (Experiment 1) or WT and APPswe/PS1ΔE9 transgenic (Tg) mice at 300 mg/kg for fifteen weeks (Experiment 2). Agmatine treatment in both experiments was well tolerated with no marked behavioural impairments, and gross necropsy and organ histology revealed no pathological alterations after 15-week dosing. Moreover, oral treatment increased agmatine levels in the hippocampus and plasma of WT mice (Experiment 1), and in 6 brain regions examined (but not plasma) of WT and Tg mice (Experiment 2), at 30 minutes or 24 hours post-treatment respectively. This study provides fundamental pre-clinical evidence that daily oral delivery of agmatine sulfate to both WT and Tg mice is safe and well tolerated. Exogenous agmatine passes through the blood brain barrier and accumulates in the brain to a greater extent in Tg mice. Furthermore exogenous agmatine has differential actions in the brain and periphery, and its effect on brain putrescine appears to be dependent on the time post-treatment.

16 citations


Journal ArticleDOI
TL;DR: This study showed that agmatine possesses a dose-dependent neuroprotective effect through its antioxidant and anti-inflammatory activities on a rotenone (ROT)-induced experimental model of PD.
Abstract: Parkinson's disease (PD) is the second most common age-related neurodegenerative disease after Alzheimer's disease, characterized by loss of dopaminergic neurons in substantia nigra pars compacta, accompanied by motor and nonmotor symptoms. The neuropathological hallmarks of PD are well reported, but the etiology of the disease is still undefined; several studies assume that oxidative stress, mitochondrial defects, and neuroinflammation play vital roles in the progress of the disease. The current study was established to investigate the neuroprotective effect of agmatine on a rotenone (ROT)-induced experimental model of PD. Adult male Sprague Dawley rats were subcutaneously injected with ROT at a dose of 2 mg/kg body weight for 35 days. Agmatine was injected intraperitoneally at 50 and 100 mg/kg body weight, 1 h prior to ROT administration. ROT-treated rats that received agmatine showed better performance on beam walking and an elevated number of rears within the cylinder test. In addition, agmatine reduced midbrain malondialdehyde as an indication of lipid peroxidation, pro-inflammatory cytokines including tumor necrosis factor alpha and interleukin-1β, and glial fibrillary acidic protein. Moreover, agmatine was responsible for preventing loss of tyrosine hydroxylase-positive neurons. In conclusion, our study showed that agmatine possesses a dose-dependent neuroprotective effect through its antioxidant and anti-inflammatory activities. These findings need further clinical investigations of agmatine as a promising neuroprotective agent for the future treatment of PD.

16 citations


Journal ArticleDOI
TL;DR: The results suggest that both neuronal NLRP1 and microglial NLRP3 inflammasomes are involved in chronic stress-induced depressive-like behaviors, and NO-pathway modulating drugs might provide novel therapeutic strategies for depression.

Journal ArticleDOI
TL;DR: This is the first study of arginine metabolism and agmatine in medication-naive first-episode patients and provides evidence of increased levels of an endogenous NMDA antagonist which decreases following antipsychotic treatment.

Journal ArticleDOI
TL;DR: Inhibition of EtOH sensitization by Agmatine is mediated through imidazoline receptors and project agmatine and imidrazoline agents in the pharmacotherapy of alcohol addiction.
Abstract: Background Locomotor sensitization to repeated ethanol (EtOH) administration is proposed to play a role in early and recurring steps of addiction. The present study was designed to examine the effect of agmatine on EtOH-induced locomotor sensitization in mice. Methods Mice received daily single intraperitoneal injection of EtOH (2.5 g/kg, 20 v/v) for 7 consecutive days. Following a 3-day EtOH-free phase, the mice were challenged with EtOH on day 11 with a single injection of EtOH. Agmatine (10 to 40 μg/mouse), endogenous agmatine enhancers (l-arginine [80 μg/mouse], arcaine [50 μg/mouse], aminoguanidine [25 μg/mouse]), and imidazoline receptor agonist/antagonists were injected (intracerebroventricular [i.c.v.]) either daily before the injection of EtOH during the 7-day development phase or on days 8, 9, and 10 (EtOH-free phase). The horizontal locomotor activity was determined on days 1, 3, 5, 7, and 11. Results Agmatine (20 to 40 μg/mouse) administration for 7 days (development phase) significantly attenuated the locomotor sensitization response of EtOH challenge on day 11. Further, the agmatine administered only during EtOH-free period (days 8, 9, and 10) also inhibited the enhanced locomotor activity on the 11th day to EtOH challenge as compared to control mice indicating blockade of expression of sensitization. Daily treatment (i.c.v.) with endogenous agmatine enhancers like l-arginine (80 μg/mouse) or arcaine (50 μg/mouse) and aminoguanidine (25 μg/mouse) restrained the development as well as expression of sensitization to EtOH. Imidazoline I1 receptor agonist, moxonidine, and I2 agonist, 2-BFI, not only decreased the development and expression of locomotor sensitization but also potentiated the effect of agmatine when employed in combination. Importantly, I1 receptor antagonist, efaroxan, and I2 antagonist, idazoxan, blocked the effect of agmatine, revealing the involvement of imidazoline receptors in agmatine-mediated inhibition of EtOH sensitization. Conclusions Inhibition of EtOH sensitization by agmatine is mediated through imidazoline receptors and project agmatine and imidazoline agents in the pharmacotherapy of alcohol addiction.

Journal ArticleDOI
TL;DR: It is suggested that the anti-inflammatory activity of agmatine on acetic acid-induced rat colitis may involve the inhibition of iNOS enzyme.
Abstract: Aim: The aim of the present study is to investigate the anti-inflammatory effect of agmatine through the inhibition of iNOS enzyme in acetic acid-induced rat colitis. Methods: Acute colitis was induced by administration of 2 mL of diluted acetic acid (4%) solution rectally. Two hours after colitis induction, animals were treated with normal saline, dexamethasone (2 mg/kg), agmatine (2, 5, 10 mg/kg), L-NAME (30 mg/kg), Aminoguanidine (20 mg/kg), agmatine (2 mg/kg) with L-NAME (30 mg/kg) and agmatine (2 mg/kg) with aminoguanidine (20 mg/kg) intraperitoneally and continued for 3 consecutive days. Assessment of macroscopic and microscopic damage was performed. MPO activity was evaluated by biochemical method. Furthermore, the tissue level of TNF-α was determined by ELISA and the expression level of iNOS protein was detected by immunohistochemistry (IHC). Results: Dexamethasone (2 mg/kg) and agmatine (5, 10 mg/kg) and subeffective doses of agmatine (2 mg/kg) with aminoguanidine (20 mg/kg) improved macroscopic and microscopic damage compared to acetic acid group (p < .001). In addition, these drugs reduced the activity of MPO (p < .001) and the level of TNF-α (p < .001) in colon tissue compared to acetic acid group. Furthermore, they decreased acetic acid-induced expression of iNOS protein in colon tissue (p < .01, p < .001). Conclusion: It is suggested that the anti-inflammatory activity of agmatine on acetic acid-induced rat colitis may involve the inhibition of iNOS enzyme.

Journal ArticleDOI
TL;DR: The data suggest that the SHR phenotype starting from early age shows signs of the impaired sarcolemmal α2-AR signaling, which can aggravate the development of this cardiovascular pathology.

Journal ArticleDOI
TL;DR: It is revealed that agmatine diminishes IL‐8 production by airway epithelial cells in response to bacterial infection, with a consequent decrease in neutrophil recruitment to the murine airways in an acute pneumonia model.
Abstract: Purpose. In the cystic fibrosis (CF) airways, Pseudomonas aeruginosa undergoes diverse physiological changes in response to inflammation, antibiotic pressure, oxidative stress and a dynamic bioavailable nutrient pool. These include loss-of-function mutations that result in reduced virulence, altered metabolism and other phenotypes that are thought to confer a selective advantage for long-term persistence. Recently, clinical isolates of P. aeruginosa that hyperproduce agmatine (decarboxylated arginine) were cultured from individuals with CF. Sputum concentrations of this metabolite were also shown to correlate with disease severity. This raised the question of whether agmatine accumulation might also confer a selective advantage for P. aeruginosa during chronic colonization of the lung. Methodology and Results. We screened a library of P. aeruginosa CF clinical isolates and found that ~5 % of subjects harboured isolates with an agmatine hyperproducing phenotype. Agmatine accumulation was a direct result of mutations in aguA, encoding the arginine deiminase that catalyses the conversion of agmatine into various polyamines. We also found that agmatine hyperproducing isolates (aguA-) had increased tolerance to the cationic antibiotics gentamicin, tobramycin and colistin relative to their chromosomally complemented strains (aguA+). Finally, we revealed that agmatine diminishes IL-8 production by airway epithelial cells in response to bacterial infection, with a consequent decrease in neutrophil recruitment to the murine airways in an acute pneumonia model. Conclusion. These data highlight a potential new role for bacterial-derived agmatine that may have important consequences for the long-term persistence of P. aeruginosa in the CF airways.

Journal ArticleDOI
TL;DR: The structural results show that MtAIH undergoes significant structural rearrangements of the long loop, which closes a tunnel-shaped active site over the course of the catalytic event, indicating the importance of the closed conformation of the gate-keeping loop for the catalysis of plant AIHs.
Abstract: Plants are unique eukaryotes that can produce putrescine (PUT), a basic diamine, from arginine via a three-step pathway. This process starts with arginine decarboxylase that converts arginine to agmatine. Then, the consecutive action of two hydrolytic enzymes, agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase, ultimately produces PUT. An alternative route of PUT biosynthesis requires ornithine decarboxylase that catalyzes direct putrescine biosynthesis. However, some plant species lack this enzyme and rely only on agmatine pathway. The scope of this manuscript concerns the structural characterization of AIH from the model legume plant, Medicago truncatula. MtAIH is a homodimer built of two subunits with a characteristic propeller fold, where five αββαβ repeated units are arranged around the fivefold pseudosymmetry axis. Dimeric assembly of this plant AIH, formed by interactions of conserved structural elements from one repeat, is drastically different from that observed in dimeric bacterial AIHs. Additionally, the structural snapshot of MtAIH in complex with 6-aminohexanamide, the reaction product analog, presents the conformation of the enzyme during catalysis. Our structural results show that MtAIH undergoes significant structural rearrangements of the long loop, which closes a tunnel-shaped active site over the course of the catalytic event. This conformational change is also observed in AIH from Arabidopsis thaliana, indicating the importance of the closed conformation of the gate-keeping loop for the catalysis of plant AIHs.

Journal ArticleDOI
TL;DR: Investigation of the effects of I1Rs activation on L-type voltage-gated Ca2+-currents under catecholaminergic stress induced by the application of β-agonist, isoproterenol confirmed a PKA-independent mechanism of their action.

Journal ArticleDOI
TL;DR: The batch and fed‐batch fermentations of the AUX5 strain were conducted in a 3‐L bioreactor, and the results showed that the AUx5 strain was able to produce 1.13 g agmatine L−1 with the yield of 0.11 g agMatine g−1 glucose, demonstrating the potential of E. coli as an industrial producer of ag matine.
Abstract: Agmatine is a kind of important biogenic amine. The chemical synthesis route is not a desirable choice for industrial production of agmatine. To date, there are no reports on the fermentative production of agmatine by microorganism. In this study, the base Escherichia coli strain AUX4 (JM109 ∆speC ∆speF ∆speB ∆argR) capable of excreting agmatine into the culture medium was first constructed by sequential deletions of the speC and speF genes encoding the ornithine decarboxylase isoenzymes, the speB gene encoding agmatine ureohydrolase and the regulation gene argR responsible for the negative control of the arg regulon. The speA gene encoding arginine decarboxylase harboured by the pKK223-3 plasmid was overexpressed in AUX4, resulting in the engineered strain AUX5. The batch and fed-batch fermentations of the AUX5 strain were conducted in a 3-L bioreactor, and the results showed that the AUX5 strain was able to produce 1.13 g agmatine L-1 with the yield of 0.11 g agmatine g-1 glucose in the batch fermentation and the fed-batch fermentation of AUX5 allowed the production of 15.32 g agmatine L-1 with the productivity of 0.48 g agmatine L-1 h-1, demonstrating the potential of E. coli as an industrial producer of agmatine.

Journal ArticleDOI
TL;DR: Treatment of diabetic animals with agmatine restores redox homeostasis and a balances antioxidant defence system enzymes in leukocytes, which is exerted by preventing oxidative-nitrative stress in animals with DM.
Abstract: Changes in cellular metabolism, development of oxidative-nitrative stress and intensification of glycation and lipid peroxidation (LPO), are significant processes that occur during diabetes mellitus (DM)-associated chronic hyperglycemia. These processes contribute to deviations in the structural organization and functional activity of leukocytes. The development of oxidative-nitrative stress in peripheral blood cells during DM can be prevented by agmatine, an endogenous metabolite of L-arginine, which is a nitric oxide synthase (NOS) inhibitor, and possesses hypoglycemic properties. The administration of agmatine to animals with DM lead to the inhibition of both constitutive and inducible NOS in leukocytes, which in turn decreased total nitrite/nitrate (NOx) levels. Additionally, we observed corresponding increases in reduced glutathione content and activity of antioxidant enzymes (SOD, CAT, GPx, GR), along with decreased levels of the thiobarbituric acid reactive substance, advanced oxidation protein products (AOPPs) and advanced glycosylation end-products (AGEs) as compared to the non-treated diabetic group. Our results indicate that treatment of diabetic animals with agmatine restores redox homeostasis and a balances antioxidant defence system enzymes in leukocytes. This corrective effect on the functional capacity of leukocytes is exerted by preventing oxidative-nitrative stress in animals with DM.

Journal ArticleDOI
TL;DR: This result suggests the involvement of imidazoline I1 and I2 receptors in agmatine induced inhibition of ethanol consumption in rats, and suggests a biogenic amine, agMatine as a promising potential treatment option for drug addiction, including alcoholism.
Abstract: Alcohol is one of the most widely abused recreational drugs, largely linked with serious health and social concerns. However, the treatment options for alcohol-use disorders have limited efficacy and exhibit a range of adverse drug reactions. Large numbers of preclinical studies have projected a biogenic amine, agmatine as a promising potential treatment option for drug addiction, including alcoholism. In the present study, administration of agmatine (20–40 mg/kg, i.p.) resulted in significant inhibition of ethanol self-administration in the right p-VTA in operant conditioning paradigm. Further, acute intracranial administration of agmatine (20 and 40 μg/rat) significantly reduced the ethanol consumption in the two bottle choice paradigm. Agmatine is degraded to putrescine and guanido-butanoic acid by the enzyme agmatinase and diamine oxidase respectively and inhibition of these enzymes results in augmentation of endogenous agmatine. In the present study, diamine oxidase inhibitor, aminoguanidine and agmatinase inhibitor, arcaine were used to block the agmatine metabolic pathways to increase brain agmatine levels. Drugs that augment endogenous agmatine levels like L-arginine (80 μg/rat, i.c.v.) or arcaine (50 μg/rat, i.c.v.) and aminoguanidine (25 μg/rat, i.c.v.) also reduced the ethanol consumption following their central administration. The pharmacological effect of agmatine on ethanol consumption was potentiated by imidazoline receptor agonists, I1 agonist moxonidine (25 μg/rat, i.c.v.), and imidazoline I2 agonist, 2-BFI (10 μg/rat, i.c.v.) and was blocked by imidazoline I1 antagonist, efaroxan (10 μg/rat, i.c.v.), and I2 antagonist, idazoxan (4 μg/rat, i.c.v.) at their ineffective doses per se. Thus, our result suggests the involvement of imidazoline I1 and I2 receptors in agmatine induced inhibition of ethanol consumption in rats.

Journal ArticleDOI
TL;DR: The anorexigenic effect of agmatine is likely to decrease NPY and AgRP expression levels and increase MC4R and IRS2 levels which was coupled with stimulation of insulin secretion, providing evidence for the anorectic effects of agMatine in fish.
Abstract: Agmatine, an endogenous biogenic amine, is considered to be a central neurotransmitter. And it plays an important role in mammal feeding behavior. However, there were few studies on the effect of agmatine on feeding behavior in fishes. Here, we investigated the impact of intracerebroventricular (ICV) injections of agmatine (1.25–20 nmol/fish) on food intake in mandarin fish (Siniperca chuatsi). At 1-h post-injection, food intake showed a significant decrease in agmatine-treated fishes compared with the saline treated. Furthermore, the food intake in agmatine treatment mostly did not differ from that in saline treatment at 4-–24-h post-injection as well as the results of genes expression of neuropeptide Y (NPY), agouti-regulated peptide (AgRP), and anorexigenic melanocortin 4 receptor (MC4R). In accordance with the insulin level increasing in liver, the gene expression of insulin receptor substrate (IRS2) was significantly higher in agmatine treatment compared to saline treatment at 1-h post-injection. Thus, the anorexigenic effect of agmatine is likely to decrease NPY and AgRP expression levels and increase MC4R and IRS2 levels which was coupled with stimulation of insulin secretion. Although these initial findings are limited in dose, the data firstly provides evidence for the anorectic effects of agmatine in fish.

Journal ArticleDOI
TL;DR: The results showed that the engineered E. coli strain AUX11 can be used for the industrial fermentative production of agmatine.
Abstract: In this study, to obtain higher agmatine yields using the previously developed E. coli strain AUX4 (JM109 ΔspeC ΔspeF ΔspeB ΔargR), the genes encoding glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), phosphoenolpyruvate carboxylase (ppc), aspartate aminotransferase (aspC), transhydrogenase (pntAB), and biosynthetic arginine decarboxylase (speA) were sequentially overexpressed by replacing their native promoters with the heterologous strong trp, core-trc, or 5Ptacs promoters to generate the plasmid-free E. coli strain AUX11. The fermentation results obtained using a 3-L bioreactor showed that AUX11 produced 2.93 g L-1 agmatine with the yield of 0.29 g agmatine g-1 glucose in the batch fermentation, and the fed-batch fermentation of AUX11 allowed the production of 40.43 g L-1 agmatine with the productivity of 1.26 g L-1 h-1 agmatine. The results showed that the engineered E. coli strain AUX11 can be used for the industrial fermentative production of agmatine.

Journal ArticleDOI
TL;DR: For the first time, the dicationic biological molecule agmatine was used in the synthesis of three ionic liquids, Agmatine ibuprofenate, AGmatine salicylate, and Agmatina nicotinate as discussed by the authors.
Abstract: For the first time, the dicationic biological molecule agmatine in the synthesis of three novel ionic liquids, agmatine ibuprofenate, agmatine salicylate, and agmatine nicotinate, as well as of six...


Journal ArticleDOI
TL;DR: The results of this study revealed the effect profile of a protective molecule against pathological neural deaths due to neurodegeneration not only in neurotoxicity due to anticancer drugs.

Journal ArticleDOI
TL;DR: Elevated agmatine degradation resulting from excess expression of agmatinase which is suggested to be effective in pathogenesis of mood disorders was compensated by this way, indicating that there may be a relationship between bipolar disorder and Agmatine and its metabolic pathway.
Abstract: Objectives: Agmatine is a cationic amine resulting from the decarboxylation of l-arginine. Agmatine has neuroprotective, anti-inflammatory, anti-stress, and anti-depressant properties. In t...

Journal ArticleDOI
TL;DR: This study is the first to report that agmatine preferentially antagonizes the GluN2B receptor subunit of the N-methyl-d-aspartate (NMDA) receptor in spinal cord, consistent with the pharmacological profile of ag matine in that it reduces chronic pain without the motor side effects commonly seen with non-subunit-selective NMDA receptor antagonists.
Abstract: Our study is the first to report that agmatine preferentially antagonizes the GluN2B receptor subunit of the N-methyl-d-aspartate (NMDA) receptor in spinal cord. The preferential targeting of GluN2...

Journal ArticleDOI
TL;DR: This study ascertains the I1R signal transduction in the normotensive Wistar and SHR cardiomyocytes and reports on the effects of rilmenidine and putative endogenous ligand on the activity of Ca2+-currents.

Journal ArticleDOI
TL;DR: Results suggest that in N. crassa AGM-1 has a close association with the F-actin population via its substrate agmatine, playing an essential role during cell development.