scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Bacteriology in 2019"


Journal ArticleDOI
TL;DR: Lag is a dynamic, organized, adaptive, and evolvable process that protects bacteria from threats, promotes reproductive fitness, and is broadly relevant to the study of bacterial evolution, host-pathogen interactions, antibiotic tolerance, environmental biology, molecular microbiology, and food safety.
Abstract: Lag is a temporary period of nonreplication seen in bacteria that are introduced to new media. Despite latency being described by Muller in 1895, only recently have we gained insights into the cellular processes characterizing lag phase. This review covers literature to date on the transcriptomic, proteomic, metabolomic, physiological, biochemical, and evolutionary features of prokaryotic lag. Though lag is commonly described as a preparative phase that allows bacteria to harvest nutrients and adapt to new environments, the implications of recent studies indicate that a refinement of this view is well deserved. As shown, lag is a dynamic, organized, adaptive, and evolvable process that protects bacteria from threats, promotes reproductive fitness, and is broadly relevant to the study of bacterial evolution, host-pathogen interactions, antibiotic tolerance, environmental biology, molecular microbiology, and food safety.

148 citations


Journal ArticleDOI
TL;DR: It is found that the perturbation of acetate metabolism due to the inflow of excess acetate accounts for 20% of the growth-inhibitory effect through a modification of the acetyl phosphate concentration.
Abstract: During aerobic growth on glucose, Escherichia coli excretes acetate, a mechanism called "overflow metabolism." At high concentrations, the secreted acetate inhibits growth. Several mechanisms have been proposed for explaining this phenomenon, but a thorough analysis is hampered by the diversity of experimental conditions and strains used in these studies. Here, we describe the construction of a set of isogenic strains that remove different parts of the metabolic network involved in acetate metabolism. Analysis of these strains reveals that (i) high concentrations of acetate in the medium inhibit growth without significantly perturbing central metabolism; (ii) growth inhibition persists even when acetate assimilation is completely blocked; and (iii) regulatory interactions mediated by acetyl-phosphate play a small but significant role in growth inhibition by acetate. The major contribution to growth inhibition by acetate may originate in systemic effects like the uncoupling effect of organic acids or the perturbation of the anion composition of the cell, as previously proposed. Our data suggest, however, that under the conditions considered here, the uncoupling effect plays only a limited role.IMPORTANCE High concentrations of organic acids such as acetate inhibit growth of Escherichia coli and other bacteria. This phenomenon is of interest for understanding bacterial physiology but is also of practical relevance. Growth inhibition by organic acids underlies food preservation and causes problems during high-density fermentation in biotechnology. What causes this phenomenon? Classical explanations invoke the uncoupling effect of acetate and the establishment of an anion imbalance. Here, we propose and investigate an alternative hypothesis: the perturbation of acetate metabolism due to the inflow of excess acetate. We find that this perturbation accounts for 20% of the growth-inhibitory effect through a modification of the acetyl phosphate concentration. Moreover, we argue that our observations are not expected based on uncoupling alone.

111 citations


Journal ArticleDOI
TL;DR: The influence of polymicrobial interactions on the antibiotic susceptibility of biofilms is discussed, and the studies that first documented the shifted antimicrobial susceptibilities of mixed-species cultures are highlighted.
Abstract: Chronic infections are frequently caused by polymicrobial biofilms. Importantly, these infections are often difficult to treat effectively in part due to the recalcitrance of biofilms to antimicrobial therapy. Emerging evidence suggests that polymicrobial interactions can lead to dramatic and unexpected changes in the ability of antibiotics to eradicate biofilms and often result in decreased antimicrobial efficacy in vitro In this review, we discuss the influence of polymicrobial interactions on the antibiotic susceptibility of biofilms, and we highlight the studies that first documented the shifted antimicrobial susceptibilities of mixed-species cultures. Recent studies have identified several mechanisms underlying the recalcitrance of polymicrobial biofilm communities, including interspecies exchange of antibiotic resistance genes, β-lactamase-mediated inactivation of antibiotics, changes in gene expression induced by metabolites and quorum sensing signals, inhibition of the electron transport chain, and changes in properties of the cell membrane. In addition to elucidating multiple mechanisms that contribute to the altered drug susceptibility of polymicrobial biofilms, these studies have uncovered novel ways in which polymicrobial interactions can impact microbial physiology. The diversity of findings discussed highlights the importance of continuing to investigate the efficacy of antibiotics against biofilm communities composed of different combinations of microbial species. Together, the data presented here illustrate the importance of studying microbes as part of mixed-species communities rather than in isolation. In light of our greater understanding of how interspecies interactions alter the efficacy of antimicrobial agents, we propose that the methods for measuring the drug susceptibility of polymicrobial infections should be revisited.

87 citations


Journal ArticleDOI
TL;DR: Findings on the occurrence, domain organization, activity control, and structural features of diadenylate cyclases and phosphodiesterases are discussed in this review.
Abstract: Cyclic di-AMP is a second-messenger nucleotide that is produced by many bacteria and some archaea. Recent work has shown that c-di-AMP is unique among the signaling nucleotides, as this molecule is in many bacteria both essential on one hand and toxic upon accumulation on the other. Moreover, in bacteria, like Bacillus subtilis, c-di-AMP controls a biological process, potassium homeostasis, by binding both potassium transporters and riboswitch molecules in the mRNAs that encode the potassium transporters. In addition to the control of potassium homeostasis, c-di-AMP has been implicated in many cellular activities, including DNA repair, cell wall homeostasis, osmotic adaptation, biofilm formation, central metabolism, and virulence. c-di-AMP is synthesized and degraded by diadenylate cyclases and phosphodiesterases, respectively. In the diadenylate cyclases, one type of catalytic domain, the diadenylate cyclase (DAC) domain, is coupled to various other domains that control the localization, the protein-protein interactions, and the regulation of the enzymes. The phosphodiesterases have a catalytic core that consists either of a DHH/DHHA1 or of an HD domain. Recent findings on the occurrence, domain organization, activity control, and structural features of diadenylate cyclases and phosphodiesterases are discussed in this review.

85 citations


Journal ArticleDOI
TL;DR: The results suggest that individually maintained sublines of PAO1, even when acquired from the same parent subline, are continuously undergoing microevolution during culture and storage that results in alterations in phenotype, potentially affecting the outcomes of in vitro phenotypic analyses and in vivo pathogenesis studies.
Abstract: Pseudomonas aeruginosa is an opportunistic pathogen found ubiquitously in the environment and commonly associated with airway infection in patients with cystic fibrosis. P. aeruginosa strain PAO1 is one of the most commonly used laboratory-adapted research strains and is a standard laboratory-adapted strain in multiple laboratories and strain banks worldwide. Due to potential isolate-to-isolate variability, we investigated the genomic and phenotypic diversity among 10 PAO1 strains (henceforth called sublines) obtained from multiple research laboratories and commercial sources. Genomic analysis predicted a total of 5,682 genes, with 5,434 (95.63%) being identical across all 10 strains. Phenotypic analyses revealed comparable growth phenotypes in rich media and biofilm formation profiles. Limited differences were observed in antibiotic susceptibility profiles and immunostimulatory potential, measured using heat-killed whole-cell preparations in four immortalized cell lines followed by quantification of interleukin-6 (IL-6) and IL-1β secretion. However, variability was observed in the profiles of secreted molecular products, most notably, in rhamnolipid, pyoverdine, pyocyanin, Pseudomonas quinolone signal (PQS), extracellular DNA, exopolysaccharide, and outer membrane vesicle production. Many of the observed phenotypic differences did not correlate with subline-specific genetic changes, suggesting alterations in transcriptional and translational regulation. Taken together, these results suggest that individually maintained sublines of PAO1, even when acquired from the same parent subline, are continuously undergoing microevolution during culture and storage that results in alterations in phenotype, potentially affecting the outcomes of in vitro phenotypic analyses and in vivo pathogenesis studies. IMPORTANCE Laboratory-adapted strains of bacteria are used throughout the world for microbiology research. These prototype strains help keep research data consistent and comparable between laboratories. However, we have observed phenotypic variability when using different strains of Pseudomonas aeruginosa PAO1, one of the major laboratory-adopted research strains. Here, we describe the genomic and phenotypic differences among 10 PAO1 strains acquired from independent sources over 15 years to understand how individual maintenance affects strain characteristics. We observed limited genomic changes but variable phenotypic changes, which may have consequences for cross-comparison of data generated using different PAO1 strains. Our research highlights the importance of limiting practices that may promote the microevolution of model strains and calls for researchers to specify the strain origin to ensure reproducibility.

57 citations


Journal ArticleDOI
TL;DR: P proteomics is used to investigate the Pseudomonas aeruginosa iron starvation response, revealing a broad landscape of metabolic and metal homeostasis changes that have not previously been described and providing evidence that many of these processes, including twitching motility, are regulated through the iron-responsive PrrF small regulatory RNAs.
Abstract: Iron is a critical nutrient for most microbial pathogens, and the immune system exploits this requirement by sequestering iron. The opportunistic pathogen Pseudomonas aeruginosa exhibits a high requirement for iron yet an exquisite ability to overcome iron deprivation during infection. Upon iron starvation, P. aeruginosa induces the expression of several high-affinity iron acquisition systems, as well as the PrrF small regulatory RNAs (sRNAs) that mediate an iron-sparing response. Here, we used liquid chromatography-tandem mass spectrometry to conduct proteomics of the iron starvation response of P. aeruginosa Iron starvation increased levels of multiple proteins involved in amino acid catabolism, providing the capacity for iron-independent entry of carbons into the tricarboxylic acid (TCA) cycle. Proteins involved in sulfur assimilation and cysteine biosynthesis were reduced upon iron starvation, while proteins involved in iron-sulfur cluster biogenesis were increased, highlighting the central role of iron in P. aeruginosa metabolism. Iron starvation also resulted in changes in the expression of several zinc-responsive proteins and increased levels of twitching motility proteins. Subsequent analyses provided evidence for the regulation of many of these proteins via posttranscriptional regulatory events, some of which are dependent upon the PrrF sRNAs. Moreover, we showed that iron-regulated twitching motility is partially dependent upon the prrF locus, highlighting a novel link between the PrrF sRNAs and motility. These findings add to the known impacts of iron starvation in P. aeruginosa and outline potentially novel roles for the PrrF sRNAs in iron homeostasis and pathogenesis.IMPORTANCE Iron is central for growth and metabolism of almost all microbial pathogens, and as such, this element is sequestered by the host innate immune system to restrict microbial growth. Here, we used label-free proteomics to investigate the Pseudomonas aeruginosa iron starvation response, revealing a broad landscape of metabolic and metal homeostasis changes that have not previously been described. We further provide evidence that many of these processes, including twitching motility, are regulated through the iron-responsive PrrF small regulatory RNAs. As such, this study demonstrates the power of proteomics for defining stress responses of microbial pathogens.

53 citations


Journal ArticleDOI
TL;DR: A sequence of phenomena leading to biofilm antibiotic tolerance involving oxygen limitation, electron acceptor starvation and growth arrest, induction of associated stress responses, and differentiation into protected cell states is supported.
Abstract: Transcriptomic, metabolomic, physiological, and computational modeling approaches were integrated to gain insight into the mechanisms of antibiotic tolerance in an in vitro biofilm system. Pseudomonas aeruginosa biofilms were grown in drip-flow reactors on a medium composed to mimic the exudate from a chronic wound. After four days, the biofilm was 114 μm thick with 9.45 log10 cfu cm-2. These biofilms exhibited tolerance, relative to exponential-phase planktonic cells, to subsequent treatment with ciprofloxacin. The biofilm specific growth rate was estimated via elemental balances to be approximately 0.37 h-1 and with a reaction-diffusion model to be 0.32 h-1 or one-third of the planktonic maximum specific growth rate. Global analysis of gene expression indicated decreased transcription of ribosomal genes and other anabolic functions in biofilms compared to exponential-phase planktonic cells and revealed the induction of multiple stress responses in biofilm cells including those associated with growth arrest, zinc limitation, hypoxia, and acyl-homoserine lactone quorum sensing. Metabolic pathways for phenazine biosynthesis and denitrification were transcriptionally activated in biofilms. A customized reaction-diffusion model predicted that steep oxygen concentration gradients form when these biofilms are thicker than about 40 μm. Mutant strains that were deficient in Psl polysaccharide synthesis, stringent response, stationary phase response, and membrane stress response exhibited increased ciprofloxacin susceptibility when cultured in biofilms. These results support a sequence of phenomena leading to biofilm antibiotic tolerance involving oxygen limitation, electron acceptor starvation and growth arrest, induction of associated stress responses, and differentiation into protected cell states. IMPORTANCE Bacteria in biofilms are protected from killing by antibiotics and this reduced susceptibility contributes to the persistence of infections such as those in the cystic fibrosis lung and chronic wounds. A generalized conceptual model of biofilm antimicrobial tolerance with these mechanistic steps is proposed: 1) establishment of concentration gradients in metabolic substrates and products; 2) active biological responses to these changes in the local chemical microenvironment; 3) entry of biofilm cells into a spectrum of states involving alternative metabolisms, stress responses, slow growth, cessation of growth, or dormancy (all prior to antibiotic treatment); 4) adaptive responses to antibiotic exposure; and 5) reduced susceptibility of microbial cells to antimicrobial challenges in some of the physiological states accessed through these changes.

51 citations


Journal ArticleDOI
TL;DR: It is found that Lrp's role is even broader than previously suspected and that it appears to interact with many other bacterial regulators to perform its function in a condition-specific manner.
Abstract: The global regulator Lrp plays a crucial role in regulating metabolism, virulence, and motility in response to environmental conditions. Lrp has previously been shown to activate or repress approximately 10% of the genes in Escherichia coli However, the full spectrum of targets, and how Lrp acts to regulate them, have stymied earlier study. We have combined matched chromatin-immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) under nine physiological conditions to comprehensively map the binding and regulatory activity of Lrp as it directs responses to nutrient abundance. In addition to identifying hundreds of novel Lrp targets, we observe two new global trends, as follows: first, that Lrp will often bind to promoters in a poised position under conditions when it has no regulatory activity to enable combinatorial interactions with other regulators, and second, that nutrient levels induce a global shift in the equilibrium between less-sequence-specific and more-sequence-specific DNA binding. The overall regulatory behavior of Lrp, which as we now show extends to 38% of E. coli genes directly or indirectly under at least one condition, thus arises from the interaction between changes in Lrp binding specificity and cooperative action with other regulators.IMPORTANCE To survive, bacteria such as E. coli must rapidly respond to changing environmental conditions, including nutrient levels. A decrease in nutrient availability causes bacteria to stop rapid replication and enter stationary phase, where they perform limited to no cell division. The E. coli global regulatory protein Lrp has been previously implicated in modulating the expression of genes particularly important at this transition from rapid to slowed growth. Here, we monitor Lrp's DNA binding locations and effect on gene expression under three different nutrient conditions across three growth stages. We find that Lrp's role is even broader than previously suspected and that it appears to interact with many other bacterial regulators to perform its function in a condition-specific manner.

51 citations


Journal ArticleDOI
TL;DR: It is proposed that communication between motor components and c-di-GMP synthesis machinery allows the cell to have a robust and sensitive switching mechanism to control motility during early events in biofilm formation.
Abstract: Flagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in Pseudomonas aeruginosa and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. c-di-GMP levels regulate motility in P. aeruginosa in part by influencing the localization of its two flagellar stator sets, MotAB and MotCD. Here, we show that while c-di-GMP can influence stator localization, stators can in turn impact c-di-GMP levels. We demonstrate that the swarming motility-driving stator MotC physically interacts with the transmembrane region of the diguanylate cyclase SadC. Furthermore, we demonstrate that this interaction is capable of stimulating SadC activity. We propose a model by which the MotCD stator set interacts with SadC to stimulate c-di-GMP production under conditions not permissive to motility. This regulation implies a positive-feedback loop in which c-di-GMP signaling events cause MotCD stators to disengage from the motor; then disengaged stators stimulate c-di-GMP production to reinforce a biofilm mode of growth. Our studies help to define the bidirectional interactions between c-di-GMP and the flagellar machinery.IMPORTANCE The ability of bacterial cells to control motility during early steps in biofilm formation is critical for the transition to a nonmotile, biofilm lifestyle. Recent studies have clearly demonstrated the ability of c-di-GMP to control motility via a number of mechanisms, including through controlling transcription of motility-related genes and modulating motor function. Here, we provide evidence that motor components can in turn impact c-di-GMP levels. We propose that communication between motor components and the c-di-GMP synthesis machinery allows the cell to have a robust and sensitive switching mechanism to control motility during early events in biofilm formation.

50 citations


Journal ArticleDOI
TL;DR: It is demonstrated that infants with CF ≤1 year of age show a distinct stool microbiota versus control infants of a comparable age, and interventions that direct the gastrointestinal microbiota closer to a healthy state may provide systemic benefits to these patients during a critical window of immune programming that might have implications for lifelong health.
Abstract: Previous work from our group indicated an association between the gastrointestinal microbiota of infants with cystic fibrosis (CF) and airway disease in this population. Here we report that stool microbiota of infants with CF demonstrates an altered but largely unchanging within-individual bacterial diversity (alpha diversity) over the first year of life, in contrast to the infants without CF (control cohort), which showed the expected increase in alpha diversity over the first year. The beta diversity, or between-sample diversity, of these two cohorts was significantly different over the first year of life and was statistically significantly associated with airway exacerbations, confirming our earlier findings. Compared with control infants, infants with CF had reduced levels of Bacteroides, a bacterial genus associated with immune modulation, as early as 6 weeks of life, and this significant reduction of Bacteroides spp. in the cohort with CF persisted over the entire first year of life. Only two other genera were significantly different across the first year of life: Roseburia was significantly reduced and Veillonella was significantly increased. Other genera showed differences between the two cohorts but only at selected time points. In vitro studies demonstrated that exposure of the apical face of polarized intestinal cell lines to Bacteroides species supernatants significantly reduced production of interleukin 8 (IL-8), suggesting a mechanism whereby changes in the intestinal microbiota could impact inflammation in CF. This work further establishes an association between gastrointestinal microbiota, inflammation, and airway disease in infants with CF and presents a potential opportunity for therapeutic interventions beginning in early life. IMPORTANCE There is growing evidence for a link between gastrointestinal bacterial communities and airway disease progression in CF. We demonstrate that infants with CF ≤1 year of age show a distinct stool microbiota versus that of control infants of a comparable age. We detected associations between the gut microbiome and airway exacerbation events in the cohort of infants with CF, and in vitro studies provided one possible mechanism for this observation. These data clarify that current therapeutics do not establish in infants with CF a gastrointestinal microbiota like that in healthy infants, and we suggest that interventions that direct the gastrointestinal microbiota closer to a healthy state may provide systemic benefits to these patients during a critical window of immune programming that might have implications for lifelong health.

46 citations


Journal ArticleDOI
TL;DR: The fundamental mechanism underlying in vivo cloning is clarified and a strain is constructed that was optimized for in vivo clones by using a single microcentrifuge tube.
Abstract: Escherichia coli has an ability to assemble DNA fragments with homologous overlapping sequences of 15 to 40 bp at each end. Several modified protocols have already been reported to improve this simple and useful DNA cloning technology. However, the molecular mechanism by which E. coli accomplishes such cloning is still unknown. In this study, we provide evidence that the in vivo cloning of E. coli is independent of both RecA and RecET recombinases but is dependent on XthA, a 3′ to 5′ exonuclease. Here, in vivo cloning of E. coli by XthA is referred to as in vivoE. coli cloning (iVEC). We also show that iVEC activity is reduced by deletion of the C-terminal domain of DNA polymerase I (PolA). Collectively, these results suggest the following mechanism of iVEC. First, XthA resects the 3′ ends of linear DNA fragments that are introduced into E. coli cells, resulting in exposure of the single-stranded 5′ overhangs. Then, the complementary single-stranded DNA ends hybridize each other, and gaps are filled by DNA polymerase I. Elucidation of the iVEC mechanism at the molecular level would further advance the development of in vivo DNA cloning technology. Already we have successfully demonstrated multiple-fragment assembly of up to seven fragments in combination with an effortless transformation procedure using a modified host strain for iVEC. IMPORTANCE Cloning of a DNA fragment into a vector is one of the fundamental techniques in recombinant DNA technology. Recently, an in vitro recombination system for DNA cloning was shown to enable the joining of multiple DNA fragments at once. Interestingly, E. coli potentially assembles multiple linear DNA fragments that are introduced into the cell. Improved protocols for this in vivo cloning have realized a high level of usability, comparable to that by in vitro recombination reactions. However, the mechanism of in vivo cloning is highly controversial. Here, we clarified the fundamental mechanism underlying in vivo cloning and also constructed a strain that was optimized for in vivo cloning. Additionally, we streamlined the procedure of in vivo cloning by using a single microcentrifuge tube.

Journal ArticleDOI
TL;DR: It is shown that floc formation is regulated by blue and green light perceived by the photoreceptor Cph2, and could play many physiological roles, be a crucial factor in marine carbon burial, and enable more efficient biotechnological cell harvesting.
Abstract: Motile strains of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 readily aggregate into flocs, or floating multicellular assemblages, when grown in liquid culture. As described here, we used confocal imaging to probe the structure of these flocs, and we developed a quantitative assay for floc formation based on fluorescence imaging of 6-well plates. The flocs are formed from strands of linked cells, sometimes packed into dense clusters but also containing voids with very few cells. Cells within the dense clusters show signs of nutrient stress, as judged by the subcellular distribution of green fluorescent protein (GFP)-tagged Vipp1 protein. We analyzed the effects on flocculation of a series of mutations that alter piliation and motility, including Δhfq, ΔpilB1, ΔpilT1, and ΔushA mutations and deletion mutations affecting major and minor pilins. The extent of flocculation is increased in the hyperpiliated ΔpilT1 mutant, but active cycles of pilus extension and retraction are not required for flocculation. Deletion of PilA1, the major subunit of type IV pili, has no effect on flocculation; however, flocculation is lost in mutants lacking an operon coding for the minor pilins PilA9 to -11. Therefore, minor pilins appear crucial for flocculation. We show that flocculation is a tightly regulated process that is promoted by blue light perception by the cyanobacteriochrome Cph2. Floc formation also seems to be a highly cooperative process. A proportion of nonflocculating Δhfq cells can be incorporated into wild-type flocs, but the presence of a high proportion of Δhfq cells disrupts the large-scale architecture of the floc.IMPORTANCE Some bacteria form flocs, which are multicellular floating assemblages of many thousands of cells. Flocs have been relatively little studied compared to surface-adherent biofilms, but flocculation could play many physiological roles, be a crucial factor in marine carbon burial, and enable more efficient biotechnological cell harvesting. We studied floc formation and architecture in the model cyanobacterium Synechocystis sp. strain PCC 6803, using mutants to identify specific cell surface structures required for floc formation. We show that floc formation is regulated by blue and green light perceived by the photoreceptor Cph2. The flocs have a characteristic structure based on strands of linked cells aggregating into dense clusters. Cells within the dense clusters show signs of nutrient stress, pointing to a disadvantage of floc formation.

Journal ArticleDOI
TL;DR: It is demonstrated that the KupA and KupB proteins of L. lactis IL1403 are high-affinity potassium transporters and that their transport activity is inhibited by the second messenger c-di-AMP.
Abstract: Cyclic di-AMP (c-di-AMP) is a second messenger involved in diverse metabolic processes, including osmolyte uptake, cell wall homeostasis, and antibiotic and heat resistance. In Lactococcus lactis, a lactic acid bacterium which is used in the dairy industry and as a cell factory in biotechnological processes, the only reported interaction partners of c-di-AMP are the pyruvate carboxylase and BusR, the transcription regulator of the busAB operon for glycine betaine uptake. However, recent studies uncovered a major role of c-di-AMP in the control of potassium homeostasis, and potassium is the signal that triggers c-di-AMP synthesis. In this study, we have identified KupA and KupB, which belong to the Kup/HAK/KT family, as novel c-di-AMP binding proteins. Both proteins are high-affinity potassium transporters, and their transport activities are inhibited by binding of c-di-AMP. Thus, in addition to the well-studied Ktr/Trk potassium channels, KupA and KupB represent a second class of potassium transporters that are subject to inhibition by c-di-AMP.IMPORTANCE Potassium is an essential ion in every living cell. Even though potassium is the most abundant cation in cells, its accumulation can be toxic. Therefore, the level of potassium has to be tightly controlled. In many Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in the control of potassium homeostasis by binding to potassium transporters and regulatory proteins and RNA molecules. In the lactic acid bacterium Lactococcus lactis, none of these conserved c-di-AMP-responsive molecules are present. In this study, we demonstrate that the KupA and KupB proteins of L. lactis IL1403 are high-affinity potassium transporters and that their transport activity is inhibited by the second messenger c-di-AMP.

Journal ArticleDOI
TL;DR: The results of this study suggest that colicin insensitivity among E. coli organisms has been greatly overestimated, and as a consequence, colicins could in fact be effective species-specific antimicrobials targeting pathogenic E. Escherichia coli.
Abstract: The outer membrane of Gram-negative bacteria presents a significant barrier for molecules entering the cell. Nevertheless, colicins, which are antimicrobial proteins secreted by Escherichia coli, can target other E. coli cells by binding to cell surface receptor proteins and activating their import, resulting in cell death. Previous studies have documented high rates of nonspecific resistance (insensitivity) of various E. coli strains toward colicins that is independent of colicin-specific immunity and is instead associated with lipopolysaccharide (LPS) in the outer membrane. This observation poses a contradiction: why do E. coli strains have colicin-expressing plasmids, which are energetically costly to retain, if cells around them are likely to be naturally insensitive to the colicin they produce? Here, using a combination of transposon sequencing and phenotypic microarrays, we show that colicin insensitivity of uropathogenic E. coli sequence type 131 (ST131) is dependent on the production of its O-antigen but that minor changes in growth conditions render the organism sensitive toward colicins. The reintroduction of O-antigen into E. coli K-12 demonstrated that it is the density of O-antigen that is the dominant factor governing colicin insensitivity. We also show, by microscopy of fluorescently labelled colicins, that growth conditions affect the degree of occlusion by O-antigen of outer membrane receptors but not the clustered organization of receptors. The result of our study demonstrate that environmental conditions play a critical role in sensitizing E. coli toward colicins and that O-antigen in LPS is central to this role. IMPORTANCEEscherichia coli infections can be a major health burden, especially with the organism becoming increasingly resistant to “last-resort” antibiotics such as carbapenems. Although colicins are potent narrow-spectrum antimicrobials with potential as future antibiotics, high levels of naturally occurring colicin insensitivity have been documented which could limit their efficacy. We identify O-antigen-dependent colicin insensitivity in a clinically relevant uropathogenic E. coli strain and show that this insensitivity can be circumvented by minor changes to growth conditions. The results of our study suggest that colicin insensitivity among E. coli organisms has been greatly overestimated, and as a consequence, colicins could in fact be effective species-specific antimicrobials targeting pathogenic E. coli such as uropathogenic E. coli (UPEC).

Journal ArticleDOI
TL;DR: A phage- and antibiotic-induced stress response is uncovered in the clinically important opportunistic pathogen Pseudomonas aeruginosa, revealing resilience against antibiotic treatment and phage therapy in healthcare settings, as well as providing a simple evolutionary strategy to avoid areas containing stress.
Abstract: We investigate the effect of bacteriophage infection and antibiotic treatment on the coordination of swarming, a collective form of flagellum- and pilus-mediated motility in bacteria. We show that phage infection of the opportunistic bacterial pathogen Pseudomonas aeruginosa abolishes swarming motility in the infected subpopulation and induces the release of the Pseudomonas quinolone signaling molecule PQS, which repulses uninfected subpopulations from approaching the infected area. These mechanisms have the overall effect of limiting the infection to a subpopulation, which promotes the survival of the overall population. Antibiotic treatment of P. aeruginosa elicits the same response, abolishing swarming motility and repulsing approaching swarms away from the antibiotic-treated area through a PQS-dependent mechanism. Swarms are entirely repelled from the zone of antibiotic-treated P. aeruginosa, consistent with a form of antibiotic evasion, and are not repelled by antibiotics alone. PQS has multiple functions, including serving as a quorum-sensing molecule, activating an oxidative stress response, and regulating the release of virulence and host-modifying factors. We show that PQS serves additionally as a stress warning signal that causes the greater population to physically avoid cell stress. The stress response at the collective level observed here in P. aeruginosa is consistent with a mechanism that promotes the survival of bacterial populations.IMPORTANCE We uncover a phage- and antibiotic-induced stress response in the clinically important opportunistic pathogen Pseudomonas aeruginosa Phage-infected P. aeruginosa subpopulations are isolated from uninfected subpopulations by the production of a stress-induced signal. Activation of the stress response by antibiotics causes P. aeruginosa to physically be repelled from the area containing antibiotics altogether, consistent with a mechanism of antibiotic evasion. The stress response observed here could increase P. aeruginosa resilience against antibiotic treatment and phage therapy in health care settings, as well as provide a simple evolutionary strategy to avoid areas containing stress.

Journal ArticleDOI
TL;DR: It is determined that both bacteria contribute structural elements to the coculture, which is reflected in its overall viscoelastic behavior, and that partitioning into distinct regions negatively affected the survival of P. agglomerans while also serving as a protective mechanism in the presence of antibiotic stress.
Abstract: Many microbes coexist within biofilms, or multispecies communities of cells encased in an extracellular matrix. However, little is known about the microbe-microbe interactions relevant for creating these structures. In this study, we explored a striking dual-species biofilm between Bacillus subtilis and Pantoea agglomerans that exhibited characteristics that were not predictable from previous work examining monoculture biofilms. Coculture wrinkle formation required a P. agglomerans exopolysaccharide as well as the B. subtilis amyloid-like protein TasA. Unexpectedly, other B. subtilis matrix components essential for monoculture biofilm formation were not necessary for coculture wrinkling (e.g., the exopolysaccharide EPS, the hydrophobin BslA, and cell chaining). In addition, B. subtilis cell chaining prevented coculture wrinkling, even though chaining was previously associated with more robust monoculture biofilms. We also observed that increasing the relative proportion of P. agglomerans (which forms completely featureless monoculture colonies) increased coculture wrinkling. Using microscopy and rheology, we observed that these two bacteria assemble into an organized layered structure that reflects the physical properties of both monocultures. This partitioning into distinct regions negatively affected the survival of P. agglomerans while also serving as a protective mechanism in the presence of antibiotic stress. Taken together, these data indicate that studying cocultures is a productive avenue to identify novel mechanisms that drive the formation of structured microbial communities.IMPORTANCE In the environment, many microbes form biofilms. However, the interspecies interactions underlying bacterial coexistence within these biofilms remain understudied. Here, we mimic environmentally relevant biofilms by studying a dual-species biofilm formed between Bacillus subtilis and Pantoea agglomerans and subjecting the coculture to chemical and physical stressors that it may experience in the natural world. We determined that both bacteria contribute structural elements to the coculture, which is reflected in its overall viscoelastic behavior. Existence within the coculture can be either beneficial or detrimental depending on the context. Many of the features and determinants of the coculture biofilm appear distinct from those identified in monoculture biofilm studies, highlighting the importance of characterizing multispecies consortia to understand naturally occurring bacterial interactions.

Journal ArticleDOI
TL;DR: New plasmid vectors that allow for titratable induction (P xyl ) or knockdown (CRISPRi) of gene expression and repression of genes in Clostridioides difficile are introduced.
Abstract: Here we introduce plasmids for xylose-regulated expression and repression of genes in Clostridioides difficile. The xylose-inducible expression vector allows for ∼100-fold induction of an mCherryOpt reporter gene. Induction is titratable and uniform from cell to cell. The gene repression plasmid is a CRISPR interference (CRISPRi) system based on a nuclease-defective, codon-optimized allele of the Streptococcus pyogenes Cas9 protein (dCas9) that is targeted to a gene of interest by a constitutively expressed single guide RNA (sgRNA). Expression of dCas9 is induced by xylose, allowing investigators to control the timing and extent of gene silencing, as demonstrated here by dose-dependent repression of a chromosomal gene for a red fluorescent protein (maximum repression, ∼100-fold). To validate the utility of CRISPRi for deciphering gene function in C. difficile, we knocked down the expression of three genes involved in the biogenesis of the cell envelope: the cell division gene ftsZ, the S-layer protein gene slpA, and the peptidoglycan synthase gene pbp-0712. CRISPRi confirmed known or expected phenotypes associated with the loss of FtsZ and SlpA and revealed that the previously uncharacterized peptidoglycan synthase PBP-0712 is needed for proper elongation, cell division, and protection against lysis. IMPORTANCEClostridioides difficile has become the leading cause of hospital-acquired diarrhea in developed countries. A better understanding of the basic biology of this devastating pathogen might lead to novel approaches for preventing or treating C. difficile infections. Here we introduce new plasmid vectors that allow for titratable induction (Pxyl) or knockdown (CRISPRi) of gene expression. The CRISPRi plasmid allows for easy depletion of target proteins in C. difficile. Besides bypassing the lengthy process of mutant construction, CRISPRi can be used to study the function of essential genes, which are particularly important targets for antibiotic development.

Journal ArticleDOI
TL;DR: This review focuses on two proteins that are highly conserved in Gram-positive organisms, DivIVA and its homolog GpsB, and attempts to summarize the recent advances and discuss their various roles in cell division, cell growth, and chromosome segregation in addition to their interactome and post-translational regulation.
Abstract: Reproduction in the bacterial kingdom predominantly occurs through binary fission-a process in which one parental cell is divided into two similarly sized daughter cells. How cell division, in conjunction with cell elongation and chromosome segregation, is orchestrated by a multitude of proteins has been an active area of research spanning the past few decades. Together, the monumental endeavors of multiple laboratories have identified several cell division and cell shape regulators as well as their underlying regulatory mechanisms in rod-shaped Escherichia coli and Bacillus subtilis, which serve as model organisms for Gram-negative and Gram-positive bacteria, respectively. Yet our understanding of bacterial cell division and morphology regulation is far from complete, especially in noncanonical and non-rod-shaped organisms. In this review, we focus on two proteins that are highly conserved in Gram-positive organisms, DivIVA and its homolog GpsB, and attempt to summarize the recent advances in this area of research and discuss their various roles in cell division, cell growth, and chromosome segregation in addition to their interactome and posttranslational regulation.

Journal ArticleDOI
TL;DR: This report identifies for the first time a dissimilatory Se(IV) reductase, Srr, from a known selenite-respiring bacterium, the haloalkalophilic Bacillus selenitireducens strain MLS10, and furthers the understanding of the mechanisms of selenium biotransformation and its biogeochemical cycle.
Abstract: The putative respiratory selenite [Se(IV)] reductase (Srr) from Bacillus selenitireducens MLS10 has been identified through a polyphasic approach involving genomics, proteomics, and enzymology. Nondenaturing gel assays were used to identify Srr in cell fractions, and the active band was shown to contain a single protein of 80 kDa. The protein was identified through liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a homolog of the catalytic subunit of polysulfide reductase (PsrA). It was found to be encoded as part of an operon that contains six genes that we designated srrE, srrA, srrB, srrC, srrD, and srrF. SrrA is the catalytic subunit (80 kDa), with a twin-arginine translocation (TAT) leader sequence indicative of a periplasmic protein and one putative 4Fe-4S binding site. SrrB is a small subunit (17 kDa) with four putative 4Fe-4S binding sites, SrrC (43 kDa) is an anchoring subunit, and SrrD (24 kDa) is a chaperon protein. Both SrrE (38 kDa) and SrrF (45 kDa) were annotated as rhodanese domain-containing proteins. Phylogenetic analysis revealed that SrrA belonged to the PsrA/PhsA clade but that it did not define a distinct subgroup, based on the putative homologs that were subsequently identified from other known selenite-respiring bacteria (e.g., Desulfurispirillum indicum and Pyrobaculum aerophilum). The enzyme appeared to be specific for Se(IV), showing no activity with selenate, arsenate, or thiosulfate, with a Km of 145 ± 53 μM, a Vmax of 23 ± 2.5 μM min−1, and a kcat of 23 ± 2.68 s−1. These results further our understanding of the mechanisms of selenium biotransformation and its biogeochemical cycle. IMPORTANCE Selenium is an essential element for life, with Se(IV) reduction a key step in its biogeochemical cycle. This report identifies for the first time a dissimilatory Se(IV) reductase, Srr, from a known selenite-respiring bacterium, the haloalkalophilic Bacillus selenitireducens strain MLS10. The work extends the versatility of the complex iron-sulfur molybdoenzyme (CISM) superfamily in electron transfer involving chalcogen substrates with different redox potentials. Further, it underscores the importance of biochemical and enzymological approaches in establishing the functionality of these enzymes.

Journal ArticleDOI
TL;DR: It is shown that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin.
Abstract: Cyclic di-AMP is a recently identified second messenger exploited by a number of Gram-positive bacteria to regulate important biological processes. Here, we studied the phenotypic alterations induced by the increased intracellular c-di-AMP levels in Streptococcus gallolyticus, an opportunistic pathogen responsible for septicemia and endocarditis in the elderly. We report that an S. gallolyticus c-di-AMP phosphodiesterase gdpP knockout mutant, which displays a 1.5-fold higher intracellular c-di-AMP levels than the parental strain UCN34, is more sensitive to osmotic stress and is morphologically smaller than the parental strain. Unexpectedly, we found that a higher level of c-di-AMP reduced biofilm formation of S. gallolyticus on abiotic surfaces and reduced adherence and cell aggregation on human intestinal cells. A genome-wide transcriptomic analysis indicated that c-di-AMP regulates many biological processes in S. gallolyticus, including the expression of various ABC transporters and disease-associated genes encoding bacteriocin and Pil3 pilus. Complementation of the gdpP in-frame deletion mutant with a plasmid carrying gdpP in trans from its native promoter restored bacterial morphology, tolerance to osmotic stress, biofilm formation, adherence to intestinal cells, bacteriocin production, and Pil3 pilus expression. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in S. gallolyticus that may be important for S. gallolyticus pathogenesis. IMPORTANCEStreptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis in the elderly and is also strongly associated with colorectal cancer. S. gallolyticus can form biofilms, express specific pili to colonize the host tissues, and produce a specific bacteriocin allowing killing of commensal bacteria in the murine colon. Nevertheless, how the expression of these colonization factors is regulated remains largely unknown. Here, we show that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin. This study indicates that c-di-AMP may constitute a key regulatory molecule for S. gallolyticus host colonization and pathogenesis.

Journal ArticleDOI
TL;DR: Understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T2SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways is discussed.
Abstract: Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.

Journal ArticleDOI
TL;DR: The observation that standard 16S amplicon primers fail to detect colonic spirochetosis may have major implications for studies searching for associations between members of the microbiota and clinical conditions such as irritable bowel syndrome (IBS).
Abstract: Colonic spirochetosis, diagnosed based on the striking appearance in histological sections, still has an obscure clinical relevance, and only a few bacterial isolates from this condition have been characterized to date. In a randomized, population-based study in Stockholm, Sweden, 745 healthy individuals underwent colonoscopy with biopsy sampling. Of these individuals, 17 (2.3%) had colonic spirochetosis, which was associated with eosinophilic infiltration and a 3-fold-increased risk for irritable bowel syndrome (IBS). We aimed to culture the bacteria and perform whole-genome sequencing of the isolates from this unique representative population sample. From 14 out of 17 individuals with spirochetosis we successfully isolated, cultured, and performed whole-genome sequencing of in total 17 isolates, including the Brachyspira aalborgi type strain, 513A. Also, 16S analysis of the mucosa-associated microbiota was performed in the cases and nonspirochetosis controls. We found one isolate to be of the species Brachyspira pilosicoli; all remaining isolates were of the species Brachyspira aalborgi. Besides displaying extensive genetic heterogeneity, the isolates harbored several mucin-degrading enzymes and other virulence-associated genes that could confer a pathogenic potential in the human colon. We also showed that 16S amplicon sequencing using standard primers for human microbiota studies failed to detect Brachyspira due to primer incompatibility. IMPORTANCE This is the first report of whole-genome analysis of clinical isolates from individuals with colonic spirochetosis. This characterization provides new opportunities in understanding the physiology and potentials of these bacteria that densely colonize the gut in the individuals infected. The observation that standard 16S amplicon primers fail to detect colonic spirochetosis may have major implications for studies searching for associations between members of the microbiota and clinical conditions such as irritable bowel syndrome (IBS) and should be taken into consideration in project design and interpretation of gastrointestinal tract microbiota in population-based and clinical settings.

Journal ArticleDOI
TL;DR: Mechanical integrity of biofilms often prevents their disruption or dispersal in heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients.
Abstract: Biofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions. A better understanding of the role of these biopolymers and their response to dynamic forces is therefore crucial for understanding the interplay between biofilm structure and function. In this paper, we review experimental techniques in rheology, which help quantify the viscoelasticity of biofilms, and modeling approaches from soft matter physics that can assist our understanding of the rheological properties. We describe how these methods could be combined with synthetic biology approaches to control and investigate the effects of secreted polymers on the physical properties of biofilms. We argue that without an integrated approach of the three disciplines, the links between genetics, composition, and interaction of matrix biopolymers and the viscoelastic properties of biofilms will be much harder to uncover.

Journal ArticleDOI
TL;DR: These bacterial stress responses are coordinated under conditions of nitrogen starvation to promote the formation of antibiotic-tolerant persister cells by elevating levels of the secondary messenger (p)ppGpp.
Abstract: To cope with fluctuations in their environment, bacteria have evolved multiple adaptive stress responses. One such response is the nitrogen regulation stress response, which allows bacteria, such as Escherichia coli, to cope with and overcome conditions of nitrogen limitation. This response is directed by the two-component system NtrBC, where NtrC acts as the major transcriptional regulator to activate the expression of genes to mount the response. Recently, my colleagues and I showed that NtrC directly regulates the expression of the relA gene, the major (p)ppGpp synthetase in E. coli, coupling the nitrogen regulation stress and stringent responses. As elevated levels of (p)ppGpp have been implicated in the formation of persister cells, here, I investigated whether nitrogen starvation promotes their formation and whether the NtrC-RelA regulatory cascade plays a role. The results reveal that nitrogen-starved E. coli synthesizes (p)ppGpp and forms a higher percentage of persister cells than nonstarved cells and that both NtrC and RelA are important for these processes. This study provides novel insights into how the formation of persisters can be promoted in response to a nutritional stress. IMPORTANCE Bacteria often reside in environments where nutrient availability is scarce; therefore, they have evolved adaptive responses to rapidly cope with conditions of feast and famine. Understanding the mechanisms that underpin the regulation of how bacteria cope with this stress is a fundamentally important question in the wider context of understanding the biology of the bacterial cell and bacterial pathogenesis. Two major adaptive mechanisms to cope with starvation are the nitrogen regulation (ntr) stress and stringent responses. Here, I describe how these bacterial stress responses are coordinated under conditions of nitrogen starvation to promote the formation of antibiotic-tolerant persister cells by elevating levels of the secondary messenger (p)ppGpp.

Journal ArticleDOI
TL;DR: This work provides new molecular insights into the initiation of resuscitation by demonstrating that VBNC E. coli cells rapidly take up pyruvate with an inducible high-affinity transporter, whose expression is triggered by the BtsSR-YpdAB sensing network.
Abstract: Escherichia coli and many other bacterial species can enter into a viable but nonculturable (VBNC) state, which is a survival strategy adopted by cells exposed to adverse environmental conditions. Pyruvate is known to be one factor that promotes resuscitation of VBNC cells. Here we studied the role of a pyruvate-sensing network, composed of the histidine kinase-response regulator systems BtsS/BtsR and YpdA/YpdB and the target gene btsT, encoding the high-affinity pyruvate/H+ symporter BtsT, in the resuscitation of VBNC E. coli K-12 cells after exposure to cold for 120 days. Analysis of the proteome of VBNC cells revealed upregulation, relative to exponentially growing cells, of BtsT and other proteins involved in pyruvate metabolism. Provision of pyruvate stimulated protein and DNA biosynthesis, and thus resuscitation, in wild-type but not btsSR ypdAB mutant VBNC cells. This result was corroborated by time-dependent tracking of the resuscitation of individual VBNC E. coli cells observed in a microfluidic system. Finally, transport assays revealed that 14C-labeled pyruvate was rapidly taken up into VBNC cells by BtsT. These results provide the first evidence that pyruvate is taken up as a carbon source for the resuscitation of VBNC E. coli cells. IMPORTANCE Viable but nonculturable (VBNC) bacteria do not form colonies in standard medium but otherwise retain their metabolic activity and can express toxic proteins. Many bacterial genera, including Escherichia, Vibrio, and Listeria, have been shown to enter the VBNC state upon exposure to adverse conditions, such as low temperature, radiation, and starvation. Ultimately, these organisms pose a public health risk with potential implications for the pharmaceutical and food industries, as dormant organisms are especially difficult to selectively eliminate and VBNC bacteria can be resuscitated if placed in an environment with appropriate nutrition and temperature. Here we used a microfluidic system to monitor the resuscitation of single VBNC cells over time. We provide new molecular insights into the initiation of resuscitation by demonstrating that VBNC E. coli cells rapidly take up pyruvate with an inducible high-affinity transporter, whose expression is triggered by the BtsSR-YpdAB sensing network.

Journal ArticleDOI
TL;DR: A new function is elucidated for NlpE by showing that it physically interacts with the Cpx sensor CpxA and acts as a sentinel that specifically monitors two essential envelope biogenesis processes, namely, lipoprotein sorting and oxidative folding.
Abstract: The envelope of Gram-negative bacteria is a complex compartment that is essential for viability. To ensure survival of the bacterial cells in fluctuating environments, several signal transduction systems, called envelope stress response systems (ESRSs), exist to monitor envelope biogenesis and homeostasis. The Cpx two-component system is an extensively studied ESRS in Escherichia coli that is active during exposure to a vast array of stresses and protects the envelope under those harmful circumstances. Overproduction of NlpE, a two-domain outer membrane lipoprotein of unclear function, has been used in numerous studies as a molecular trigger to turn on the system artificially. However, the mechanism of Cpx activation by NlpE, as well as its physiological relevance, awaited further investigation. In this paper, we provide novel insights into the role played by NlpE in the Cpx system. We found that, among all outer membrane lipoproteins in E. coli, NlpE is sufficient to induce Cpx when lipoprotein trafficking is perturbed. Under such conditions, fitness is increased by the presence of NlpE. Moreover, we show that NlpE, through its N-terminal domain, physically interacts with the Cpx sensor kinase CpxA. Our data suggest that NlpE also serves to activate the Cpx system during oxidative folding defects in the periplasm and that its C-terminal domain is involved in the sensing mechanism. Overall, our data demonstrate that NlpE acts as a sentinel for two important envelope biogenesis processes, namely, lipoprotein sorting and oxidative folding, and they further establish NlpE as a bona fide member of the Cpx two-component system.IMPORTANCE Bacteria rely on a sophisticated envelope to shield them against challenging environmental conditions and therefore need to ensure correct envelope assembly and integrity. A major signaling pathway that performs this role in Gram-negative species is the Cpx system. An outer membrane lipoprotein of unclear function, NlpE, has long been exploited as a research tool to study Cpx in E. coli, since it triggers this system when overproduced or mislocalized; however, the mechanism and physiological relevance of the NlpE-Cpx connection have awaited further investigation. We elucidate a new function for NlpE by showing that it physically interacts with the Cpx sensor CpxA and acts as a sentinel that specifically monitors two essential envelope biogenesis processes, namely, lipoprotein sorting and oxidative folding.

Journal ArticleDOI
TL;DR: Cryo-electron tomography and subtomogram averaging are used to determine high-resolution in situ structures of polar flagella in Pseudomonas aeruginosa and peritrichous flageella in Salmonella enterica serovar Typhimurium, demonstrating substantial variation between flagellar systems in these organisms.
Abstract: The bacterial flagellum is a sophisticated self-assembling nanomachine responsible for motility in many bacterial pathogens, including Pseudomonas aeruginosa, Vibrio spp., and Salmonella enterica The bacterial flagellum has been studied extensively in the model systems Escherichia coli and Salmonella enterica serovar Typhimurium, yet the range of variation in flagellar structure and assembly remains incompletely understood. Here, we used cryo-electron tomography and subtomogram averaging to determine in situ structures of polar flagella in P. aeruginosa and peritrichous flagella in S Typhimurium, revealing notable differences between these two flagellar systems. Furthermore, we observed flagellar outer membrane complexes as well as many incomplete flagellar subassemblies, which provide additional insight into mechanisms underlying flagellar assembly and loss in both P. aeruginosa and S Typhimurium.IMPORTANCE The bacterial flagellum has evolved as one of the most sophisticated self-assembled molecular machines, which confers locomotion and is often associated with virulence of bacterial pathogens. Variation in species-specific features of the flagellum, as well as in flagellar number and placement, results in structurally distinct flagella that appear to be adapted to the specific environments that bacteria encounter. Here, we used cutting-edge imaging techniques to determine high-resolution in situ structures of polar flagella in Pseudomonas aeruginosa and peritrichous flagella in Salmonella enterica serovar Typhimurium, demonstrating substantial variation between flagella in these organisms. Importantly, we observed novel flagellar subassemblies and provided additional insight into the structural basis of flagellar assembly and loss in both P. aeruginosa and S Typhimurium.

Journal ArticleDOI
Zhufeng Zhang1, Saifu Pan1, Tao Liu1, Yingjun Li1, Nan Peng1 
TL;DR: It is demonstrated that two Cas4 family proteins have essential roles in recognizing the 5' PAM and 3' nucleotide motif of protospacers and in determining both the spacer length and its orientation and amino acid residues of the Cas4 proteins that facilitate these functions are identified.
Abstract: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems incorporate short DNA fragments from invasive genetic elements into host CRISPR arrays in order to generate host immunity. Recently, we demonstrated that the Csa3a regulator protein triggers CCN protospacer-adjacent motif (PAM)-dependent CRISPR spacer acquisition in the subtype I-A CRISPR-Cas system of Sulfolobus islandicus. However, the mechanisms underlying specific protospacer selection and spacer insertion remained unclear. Here, we demonstrate that two Cas4 family proteins (Cas4 and Csa1) have essential roles (i) in recognizing the 5′ PAM and 3′ nucleotide motif of protospacers and (ii) in determining both the spacer length and its orientation. Furthermore, we identify amino acid residues of the Cas4 proteins that facilitate these functions. Overexpression of the Cas4 and Csa1 proteins, and also that of an archaeal virus-encoded Cas4 protein, resulted in strongly reduced adaptation efficiency, and the former proteins yielded a high incidence of PAM-dependent atypical spacer integration or of PAM-independent spacer integration. We further demonstrated that in plasmid challenge experiments, overexpressed Cas4-mediated defective spacer acquisition in turn potentially enabled targeted DNA to escape subtype I-A CRISPR-Cas interference. In summary, these results define the specific involvement of diverse Cas4 proteins in in vivo CRISPR spacer acquisition. Furthermore, we provide support for an anti-CRISPR role for virus-encoded Cas4 proteins that involves compromising CRISPR-Cas interference activity by hindering spacer acquisition. IMPORTANCE The Cas4 family endonuclease is an essential component of the adaptation module in many variants of CRISPR-Cas adaptive immunity systems. The CrenarchaeotaSulfolobus islandicus REY15A carries two cas4 genes (cas4 and csa1) linked to the CRISPR arrays. Here, we demonstrate that Cas4 and Csa1 are essential to CRISPR spacer acquisition in this organism. Both proteins specify the upstream and downstream conserved nucleotide motifs of the protospacers and define the spacer length and orientation in the acquisition process. Conserved amino acid residues, in addition to those recently reported, were identified to be important for these functions. More importantly, overexpression of the Sulfolobus viral Cas4 abolished spacer acquisition, providing support for an anti-CRISPR role for virus-encoded Cas4 proteins that inhibit spacer acquisition.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that nucleases are induced in dispersed P. aeruginosa cells, are essential to the dispersion response, and that degradation of matrix eDNA by endogenously produced/secreted EndA is required for P.aerug inosa biofilm dispersion.
Abstract: The dispersion of biofilms is an active process resulting in the release of planktonic cells from the biofilm structure. While much is known about the process of dispersion cue perception and the subsequent modulation of the c-di-GMP pool, little is known about subsequent events resulting in the release of cells from the biofilm. Given that dispersion coincides with void formation and an overall erosion of the biofilm structure, we asked whether dispersion involves degradation of the biofilm matrix. Here, we focused on extracellular genomic DNA (eDNA) due to its almost universal presence in the matrix of biofilm-forming species. We identified two probable nucleases, endA and eddB, and eddA encoding a phosphatase that were significantly increased in transcript abundance in dispersed cells. However, only inactivation of endA but not eddA or eddB impaired dispersion by Pseudomonas aeruginosa biofilms in response to glutamate and nitric oxide (NO). Heterologously produced EndA was found to be secreted and active in degrading genomic DNA. While endA inactivation had little effect on biofilm formation and the presence of eDNA in biofilms, eDNA degradation upon induction of dispersion was impaired. In contrast, induction of endA expression coincided with eDNA degradation and resulted in biofilm dispersion. Thus, released cells demonstrated a hyperattaching phenotype but remained as resistant to tobramycin as biofilm cells from which they egress, indicating EndA-dispersed cells adopted some but not all of the phenotypes associated with dispersed cells. Our findings indicate for the first time a role of DNase EndA in dispersion and suggest weakening of the biofilm matrix is a requisite for biofilm dispersion.IMPORTANCE The finding that exposure to DNase I impairs biofilm formation or leads to the dispersal of early stage biofilms has led to the realization of extracellular genomic DNA (eDNA) as a structural component of the biofilm matrix. However, little is known about the contribution of intrinsic DNases to the weakening of the biofilm matrix and dispersion of established biofilms. Here, we demonstrate for the first time that nucleases are induced in dispersed Pseudomonas aeruginosa cells and are essential to the dispersion response and that degradation of matrix eDNA by endogenously produced/secreted EndA is required for P. aeruginosa biofilm dispersion. Our findings suggest that dispersing cells mediate their active release from the biofilm matrix via the induction of nucleases.

Journal ArticleDOI
TL;DR: The TonB-dependent receptor LanA is the first lanthanum receptor identified in a methanotroph and advances the knowledge of microbe-metal interactions in environmental niches that impact atmospheric methane levels, and are thus relevant to climate change.
Abstract: Several of the metabolic enzymes in methanotrophic bacteria rely on metals for both their expression and their catalysis. The MxaFI methanol dehydrogenase enzyme complex uses calcium as a cofactor to oxidize methanol, while the alternative methanol dehydrogenase XoxF uses lanthanide metals such as lanthanum and cerium for the same function. Lanthanide metals, abundant in the earth’s crust, strongly repress the transcription of mxaF yet activate the transcription of xoxF. This regulatory program, called the “lanthanide switch,” is central to methylotrophic metabolism, but only some of its components are known. To uncover additional components of the lanthanide switch, we developed a chemical mutagenesis system in the type I gammaproteobacterial methanotroph “Methylotuvimicrobium buryatense” 5GB1C and designed a selection system for mutants unable to repress the mxaF promoter in the presence of lanthanum. Whole-genome resequencing for multiple lanthanide switch mutants identified several unique point mutations in a single gene encoding a TonB-dependent receptor, which we have named LanA. The LanA TonB-dependent receptor is absolutely required for the lanthanide switch and controls the expression of a small set of genes. While mutation of the lanA gene does not affect the amount of cell-associated lanthanum, it is essential for growth in the absence of the MxaF methanol dehydrogenase, suggesting that LanA is involved in lanthanum uptake to supply the XoxF methanol dehydrogenase with its critical metal ion cofactor. The discovery of this novel component of the lanthanide regulatory system highlights the complexity of this circuit and suggests that further components are likely involved. IMPORTANCE Lanthanide metals, or rare earth elements, are abundant in nature and used heavily in technological devices. Biological interactions with lanthanides are just beginning to be unraveled. Until very recently, microbial mechanisms of lanthanide metal interaction and uptake were unknown. The TonB-dependent receptor LanA is the first lanthanum receptor identified in a methanotroph. Sequence homology searches with known metal transporters and regulators could not be used to identify LanA or other lanthanide metal switch components, and this method for mutagenesis and selection was required to identify the receptor. This work advances the knowledge of microbe-metal interactions in environmental niches that impact atmospheric methane levels and are thus relevant to climate change.