scispace - formally typeset
Search or ask a question

Showing papers on "Pore forming protein published in 2014"


Journal ArticleDOI
02 Dec 2014-eLife
TL;DR: It is shown that suilysin assembly is a noncooperative process that is terminated before the protein inserts into the membrane, and the resulting ring-shaped pores and kinetically trapped arc-shaped assemblies are all seen to perforate the membrane.
Abstract: Membrane attack complex/perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins constitute a major superfamily of pore-forming proteins that act as bacterial virulence factors and effectors in immune defence. Upon binding to the membrane, they convert from the soluble monomeric form to oligomeric, membrane-inserted pores. Using real-time atomic force microscopy (AFM), electron microscopy (EM), and atomic structure fitting, we have mapped the structure and assembly pathways of a bacterial CDC in unprecedented detail and accuracy, focussing on suilysin from Streptococcus suis. We show that suilysin assembly is a noncooperative process that is terminated before the protein inserts into the membrane. The resulting ring-shaped pores and kinetically trapped arc-shaped assemblies are all seen to perforate the membrane, as also visible by the ejection of its lipids. Membrane insertion requires a concerted conformational change of the monomeric subunits, with a marked expansion in pore diameter due to large changes in subunit structure and packing.

152 citations


Journal ArticleDOI
TL;DR: The results exactly quantified the effect of perforin-dependent direct cytotoxicity of NK cells on HT29 on primary tumor growth, number of CTCs in the blood and the number of metastases.
Abstract: For long, natural killer (NK) cells have been suspected to play a critical role in suppressing the development of spontaneous metastases in cancer patients. Despite a wide range of studies it remains unclear so far to what extent primary tumor growth together with formation of distant metastases and NK cell activity influence each other. To precisely investigate the role of NK cells with a perforin-deficiency in cancer growth and metastasis formation, human HT29 colon cancer cells were subcutaneously grafted into pore forming protein and recombination activating gene 2 double knock out (pfp/rag2) mice and in recombination activating gene 2 only knock out (rag2) mice both with black six background. Both mice lack B and T cell functions due to the absence of rag2. Primary tumors developed in 16/16 in pfp/rag2 and 20/20 rag2 mice. At sacrifice primary tumor weight did not differ significantly. However, tumors grew faster in pfp/rag2 mice (50 days) than in pfp/rag2 mice (70 days). Circulating tumor cells (CTC) in murine blood were nearly three times higher in pfp/rag2 (68 cells/ml) than in rag2 mice (24 cells/ml). Lung metastases occurred frequently in pfp/rag2 mice (13/16) and infrequently in rag2 mice (5/20). The mean number of metastases was 789 in pfp/rag2 mice compared to 210 in rag2 mice. Lung metastases in pfp/rag2 mice consisted of 10–100 tumor cells while those in rag2 mice were generally disseminated tumor cells (DTCs). Computer modelling showed that perforin-dependent killing of NK cells decelerates the growth of the primary tumour and kills 80% of CTCs. Furthermore, perforin-mediated cytotoxicity hampers the proliferation of the malignant cells in host tissue forcing them to stay dormant for at least 30 days. The results exactly quantified the effect of perforin-dependent direct cytotoxicity of NK cells on HT29 on primary tumor growth, number of CTCs in the blood and the number of metastases. The largest effects were seen in the number of mice developing spontaneous lung metastases and the mean number of lung metastases. Hence, perforin-mediated cytotoxicity used for direct killing by NK cells is more important than indirect killing by secretion of death-inducing ligands by NK cells.

50 citations


Book ChapterDOI
TL;DR: This chapter describes the current understanding of how PFN accomplishes its rate-limiting function, where PFN is expressed and how its expression is regulated, the biogenesis and storage of PFN in killer cells and how they are protected from potential damage.
Abstract: Perforin (PFN) is the key pore-forming molecule in the cytotoxic granules of immune killer cells. Expressed only in killer cells, PFN is the rate-limiting molecule for cytotoxic function, delivering the death-inducing granule serine proteases (granzymes) into target cells marked for immune elimination. In this chapter we describe our current understanding of how PFN accomplishes this task. We discuss where PFN is expressed and how its expression is regulated, the biogenesis and storage of PFN in killer cells and how they are protected from potential damage, how it is released, how it delivers Granzymes into target cells and the consequences of PFN deficiency.

47 citations


Journal ArticleDOI
TL;DR: The authors' observations imply that CSFV p7 relies on genus-specific structures-mechanisms to perform its viroporin function, and effects of lipid composition and structural data further support that the resulting peptide may comprise a bona fide surrogate to assay p7 activity in model membranes.

25 citations


Journal ArticleDOI
TL;DR: The authors' data indicate that OlyA/PlyB form transmembrane pores of varied sizes, as other pore‐forming proteins with a MACPF domain, which strongly suggests a colloid‐osmotic type of erythrocyte lysis.

21 citations