scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Cancer in 2014"


Journal ArticleDOI
TL;DR: The ceRNA regulatory network involving HOTAIR and the positive interaction between HotaIR and HER2 may contribute to a better understanding of gastric cancer pathogenesis and facilitate the development of lncRNA-directed diagnostics and therapeutics against this disease.
Abstract: Accumulating evidence indicates that the long non-coding RNA HOTAIR plays a critical role in cancer progression and metastasis However, the overall biological role and clinical significance of HOTAIR in gastric carcinogenesis remains largely unknown HOTAIR expression was measured in 78 paired cancerous and noncancerous tissue samples by real-time PCR The effects of HOTAIR on gastric cancer cells were studied by overexpression and RNA interference approaches in vitro and in vivo Insights of the mechanism of competitive endogenous RNAs (ceRNAs) were gained from bioinformatic analysis, luciferase assays and RNA binding protein immunoprecipitation (RIP) The positive HOTAIR/HER2 interaction was identified and verified by immunohistochemistry assay and bivariate correlation analysis HOTAIR upregulation was associated with larger tumor size, advanced pathological stage and extensive metastasis, and also correlated with shorter overall survival of gastric cancer patients Furthermore, HOTAIR overexpression promoted the proliferation, migration and invasion of gastric carcinoma cells, while HOTAIR depletion inhibited both cell invasion and cell viability, and induced growth arrest in vitro and in vivo In particular, HOTAIR may act as a ceRNA, effectively becoming a sink for miR-331-3p, thereby modulating the derepression of HER2 and imposing an additional level of post-transcriptional regulation Finally, the positive HOTAIR/HER2 correlation was significantly associated with advanced gastric cancers HOTAIR overexpression represents a biomarker of poor prognosis in gastric cancer, and may confer malignant phenotype to tumor cells The ceRNA regulatory network involving HOTAIR and the positive interaction between HOTAIR and HER2 may contribute to a better understanding of gastric cancer pathogenesis and facilitate the development of lncRNA-directed diagnostics and therapeutics against this disease

811 citations


Journal ArticleDOI
TL;DR: An in-depth review of the literature is provided to highlight the importance of CA125 as a prognostic and diagnostic marker for ovarian cancer and the increasing body of literature describing the biological role of MUC16 in the progression and metastasis of ovarian tumors.
Abstract: Over three decades have passed since the first report on the expression of CA125 by ovarian tumors. Since that time our understanding of ovarian cancer biology has changed significantly to the point that these tumors are now classified based on molecular phenotype and not purely on histological attributes. However, CA125 continues to be, with the recent exception of HE4, the only clinically reliable diagnostic marker for ovarian cancer. Many large-scale clinical trials have been conducted or are underway to determine potential use of serum CA125 levels as a screening modality or to distinguish between benign and malignant pelvic masses. CA125 is a peptide epitope of a 3–5 million Da mucin, MUC16. Here we provide an in-depth review of the literature to highlight the importance of CA125 as a prognostic and diagnostic marker for ovarian cancer. We focus on the increasing body of literature describing the biological role of MUC16 in the progression and metastasis of ovarian tumors. Finally, we consider previous and on-going efforts to develop therapeutic approaches to eradicate ovarian tumors by targeting MUC16. Even though CA125 is a crucial marker for ovarian cancer, the exact structural definition of this antigen continues to be elusive. The importance of MUC16/CA125 in the diagnosis, progression and therapy of ovarian cancer warrants the need for in-depth research on the biochemistry and biology of this mucin. A renewed focus on MUC16 is likely to culminate in novel and more efficient strategies for the detection and treatment of ovarian cancer.

343 citations


Journal ArticleDOI
TL;DR: It is demonstrated that microRNA carrying exosomes can be transferred among different cell lines through direct uptake and, upon uptake, miR-10b can suppress the protein level of its target genes such as HOXD10 and KLF4, indicating its functional significance.
Abstract: Exosomes are 30-100 nm membrane vesicles of endocytic origin, mediating diverse biological functions including tumor cell invasion, cell-cell communication and antigen presentation through transfer of proteins, mRNAs and microRNAs. Recent evidence suggests that microRNAs can be released through ceramide-dependent secretory machinery regulated by neutral sphingomyelinase 2 (nSMase2) enzyme encoded by the smpd3 gene that triggers exosome secretion. However, whether exosome-mediated microRNA transfer plays any role in cell invasion remains poorly understood. Thus, the aim of this study was to identify the exosomal microRNAs involved in breast cancer invasion. The expression level of endogenous and exosomal miRNAs were examined by real time PCR and the expression level of target proteins were detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study its uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-10b was estimated by invasion assay. In this study, we demonstrate that microRNA carrying exosomes can be transferred among different cell lines through direct uptake. miR-10b is highly expressed in metastatic breast cancer MDA-MB-231 cells as compared to non-metastatic breast cancer cells or non-malignant breast cells; it is actively secreted into medium via exosomes. In particular, nSMase2 or ceramide promotes the exosome-mediated miR-10b secretion whereas ceramide inhibitor suppresses this secretion. Moreover, upon uptake, miR-10b can suppress the protein level of its target genes such as HOXD10 and KLF4, indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could induce the invasion ability of non-malignant HMLE cells. Together, our results suggest that a set of specific microRNAs may play an important role in modulating tumor microenvironment through exosomes. Thus, a better understanding of this process may aid in the development of novel therapeutic agents.

313 citations


Journal ArticleDOI
TL;DR: Data indicate that WNT5A has a broader function on tumor progression and metastatic spread than previously known; by inducing exosome-release of immunomodulatory and pro-angiogenic factors that enhance the immunosuppressive and angiogenic capacity of the tumors thus rendering them more aggressive and more prone to metastasize.
Abstract: Wnt proteins are important for developmental processes and certain diseases. WNT5A is a non-canonical Wnt protein that previously has been shown to play a role in the progression of malignant melanoma. High expression of WNT5A in melanoma tumors correlates to formation of distant metastasis and poor prognosis. This has partly been described by the findings that WNT5A expression in melanoma cell lines increases migration and invasion.

223 citations


Journal ArticleDOI
TL;DR: It is concluded that dynamic alterations in miRNA expression occur early on during androgen deprivation therapy, and androgen receptor blockade, and the cumulative effect of these altered miRNAs is the temporal modulation of multiple signaling pathways promoting survival and acquisition of resistance.
Abstract: Development of resistance to androgen deprivation therapy (ADT) is a major obstacle for the management of advanced prostate cancer. Therapies with androgen receptor (AR) antagonists and androgen withdrawal initially regress tumors but development of compensatory mechanisms including AR bypass signaling leads to re-growth of tumors. MicroRNAs (miRNAs) are small regulatory RNAs that are involved in maintenance of cell homeostasis but are often altered in tumor cells. In this study, we determined the association of genome wide miRNA expression (1113 unique miRNAs) with development of resistance to ADT. We used androgen sensitive prostate cancer cells that progressed to ADT and AR antagonist Casodex (CDX) resistance upon androgen withdrawal and treatment with CDX. Validation of expression of a subset of 100 miRNAs led to identification of 43 miRNAs that are significantly altered during progression of cells to treatment resistance. We also show a correlation of altered expression of 10 proteins targeted by some of these miRNAs in these cells. We conclude that dynamic alterations in miRNA expression occur early on during androgen deprivation therapy, and androgen receptor blockade. The cumulative effect of these altered miRNA expression profiles is the temporal modulation of multiple signaling pathways promoting survival and acquisition of resistance. These early events are driving the transition to castration resistance and cannot be studied in already developed CRPC cell lines or tissues. Furthermore our results can be used a prognostic marker of cancers with a potential to be resistant to ADT.

217 citations


Journal ArticleDOI
TL;DR: Overexpression of BANCR was found to play a key role in epithelial-mesenchymal transition (EMT) through the regulation of E-cadherin, N-cAdherin and Vimentin expression, and it was determined that BAN CR actively functions as a regulator of EMT during NSCLC metastasis.
Abstract: Recent evidence indicates that long noncoding RNAs (lncRNAs) play a critical role in the regulation of cellular processes, such as differentiation, proliferation and metastasis. These lncRNAs are found to be dysregulated in a variety of cancers. BRAF activated non-coding RNA (BANCR) is a 693-bp transcript on chromosome 9 with a potential functional role in melanoma cell migration. The clinical significance of BANCR, and its’ molecular mechanisms controlling cancer cell migration and metastasis are unclear. Expression of BANCR was analyzed in 113 non-small cell lung cancer (NSCLC) tissues and seven NSCLC cell lines using quantitative polymerase chain reaction (qPCR) assays. Gain and loss of function approaches were used to investigate the biological role of BANCR in NSCLC cells. The effects of BANCR on cell viability were evaluated by MTT and colony formation assays. Apoptosis was evaluated by Hoechst staining and flow cytometry. Nude mice were used to examine the effects of BANCR on tumor cell metastasis in vivo. Protein levels of BANCR targets were determined by western blotting and fluorescent immunohistochemistry. BANCR expression was significantly decreased in 113 NSCLC tumor tissues compared with normal tissues. Additionally, reduced BANCR expression was associated with larger tumor size, advanced pathological stage, metastasis distance, and shorter overall survival of NSCLC patients. Reduced BANCR expression was found to be an independent prognostic factor for NSCLC. Histone deacetylation was involved in the downregulation of BANCR in NSCLC cells. Ectopic expression of BANCR impaired cell viability and invasion, leading to the inhibition of metastasis in vitro and in vivo. However, knockdown of BANCR expression promoted cell migration and invasion in vitro. Overexpression of BANCR was found to play a key role in epithelial-mesenchymal transition (EMT) through the regulation of E-cadherin, N-cadherin and Vimentin expression. We determined that BANCR actively functions as a regulator of EMT during NSCLC metastasis, suggesting that BANCR could be a biomarker for poor prognosis of NSCLC.

193 citations


Journal ArticleDOI
TL;DR: This review summarizes the expression and biological function of CK1 family members in normal and malignant cells and the evidence obtained so far about their role in tumorigenesis.
Abstract: Isoforms of the casein kinase 1 (CK1) family have been shown to phosphorylate key regulatory molecules involved in cell cycle, transcription and translation, the structure of the cytoskeleton, cell-cell adhesion and receptor-coupled signal transduction. They regulate key signaling pathways known to be critically involved in tumor progression. Recent results point to an altered expression or activity of different CK1 isoforms in tumor cells. This review summarizes the expression and biological function of CK1 family members in normal and malignant cells and the evidence obtained so far about their role in tumorigenesis.

189 citations


Journal ArticleDOI
TL;DR: HOTAIR is a c-Myc-activated driver of malignancy, which acts in part through repression of miRNA-130a, and is demonstrated to have a binding site vital for the regulation of miRNAs by HOTAIR.
Abstract: Protein coding genes account for only about 2% of the human genome, whereas the vast majority of transcripts are non-coding RNAs including long non-coding RNAs. A growing volume of literature has proposed that lncRNAs are important players in cancer. HOTAIR was previously shown to be an oncogene and negative prognostic factor in a variety of cancers. However, the factors that contribute to its upregulation and the interaction between HOTAIR and miRNAs are largely unknown. A computational screen of HOTAIR promoter was conducted to search for transcription-factor-binding sites. HOTAIR promoter activities were examined by luciferase reporter assay. The function of the c-Myc binding site in the HOTAIR promoter region was tested by a promoter assay with nucleotide substitutions in the putative E-box. The association of c-Myc with the HOTAIR promoter in vivo was confirmed by chromatin immunoprecipitation assay and Electrophoretic mobility shift assay. A search for miRNAs with complementary base paring with HOTAIR was performed utilizing online software program. Gain and loss of function approaches were employed to investigate the expression changes of HOTAIR or miRNA-130a. The expression levels of HOTAIR, c-Myc and miRNA-130a were examined in 65 matched pairs of gallbladder cancer tissues. The effects of HOTAIR and miRNA-130a on gallbladder cancer cell invasion and proliferation was tested using in vitro cell invasion and flow cytometric assays. We demonstrate that HOTAIR is a direct target of c-Myc through interaction with putative c-Myc target response element (RE) in the upstream region of HOTAIR in gallbladder cancer cells. A positive correlation between c-Myc and HOTAIR mRNA levels was observed in gallbladder cancer tissues. We predicted that HOTAIR harbors a miRNA-130a binding site. Our data showed that this binding site is vital for the regulation of miRNA-130a by HOTAIR. Moreover, a negative correlation between HOTAIR and miRNA-130a was observed in gallbladder cancer tissues. Finally, we demonstrate that the oncogenic activity of HOTAIR is in part through its negative regulation of miRNA-130a. Together, these results suggest that HOTAIR is a c-Myc-activated driver of malignancy, which acts in part through repression of miRNA-130a.

187 citations


Journal ArticleDOI
TL;DR: Overexpression of ENO1 is associated with glioma progression and inactivated PI3K/Akt pathway regulating the cell growth and epithelial-mesenchymal transition (EMT) progression.
Abstract: The success of using glycolytic inhibitors for cancer treatment relies on better understanding the roles of each frequently deregulated glycolytic genes in cancer. This report analyzed the involvement of a key glycolytic enzyme, alpha-enolase (ENO1), in tumor progression and prognosis of human glioma. ENO1 expression levels were examined in glioma tissues and normal brain (NB) tissues. The molecular mechanisms of ENO1 expression and its effects on cell growth, migration and invasion were also explored by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, Transwell chamber assay, Boyden chamber assay, Western blot and in vivo tumorigenesis in nude mice. ENO1 mRNA and protein levels were upregulated in glioma tissues compared to NB. In addition, increased ENO1 was associated disease progression in glioma samples. Knocking down ENO1 expression not only significantly decreased cell proliferation, but also markedly inhibited cell migration and invasion as well as in vivo tumorigenesis. Mechanistic analyses revealed that Cyclin D1, Cyclin E1, pRb, and NF-κB were downregulated after stable ENO1 knockdown in glioma U251 and U87 cells. Conversely, knockdown of ENO1 resulted in restoration of E-cadherin expression and suppression of mesenchymal cell markers, such as Vimentin, Snail, N-Cadherin, β-Catenin and Slug. Furthermore, ENO1 suppression inactivated PI3K/Akt pathway regulating the cell growth and epithelial-mesenchymal transition (EMT) progression. Overexpression of ENO1 is associated with glioma progression. Knockdown of ENO1 expression led to suppressed cell growth, migration and invasion progression by inactivating the PI3K/Akt pathway in glioma cells.

179 citations


Journal ArticleDOI
TL;DR: The wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression are described and how this knowledge might be exploited for the development of future mi RNA-128 based therapies for the treatment of cancer as well as metabolic diseases are described.
Abstract: MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases.

167 citations


Journal ArticleDOI
TL;DR: These findings provide the first clues regarding the role of the miR-143/145 cluster as a tumor suppressor in breast cancer through the inhibition of ERBB3 translation and support the idea that different miRNAs in a cluster can synergistically repress a given target mRNA.
Abstract: ERBB3, one of the four members of the ErbB family of receptor tyrosine kinases, plays an important role in breast cancer etiology and progression. In the present study, we aimed to identify novel miRNAs that can potentially target ERBB3 and their biological functions. The expression levels of miR-143/145 and target mRNA were examined by relative quantification RT-PCR, and the expression levels of target protein were detected by Western blot. We used bioinformatic analyses to search for miRNAs that can potentially target ERBB3. Luciferase reporter plasmids were constructed to confirm direct targeting. Furthermore, the biological consequences of the targeting of ERBB3 by miR-143/145 were examined by cell proliferation and invasion assays in vitro and by the mouse xenograft tumor model in vivo. We identified an inverse correlation between miR-143/145 levels and ERBB3 protein levels, but not between miR-143/145 levels and ERBB3 mRNA levels, in breast cancer tissue samples. We identified specific targeting sites for miR-143 and miR-145 (miR-143/145) in the 3’-untranslated region (3’-UTR) of the ERBB3 gene and regulate ERBB3 expression. We demonstrated that the repression of ERBB3 by miR-143/145 suppressed the proliferation and invasion of breast cancer cells, and that miR-143/145 showed an anti-tumor effect by negatively regulating ERBB3 in the xenograft mouse model. Interestingly, miR-143 and miR-145 showed a cooperative repression of ERBB3 expression and cell proliferation and invasion in breast cancer cells, such that the effects of the two miRNAs were greater than with either miR-143 or miR-145 alone. Taken together, our findings provide the first clues regarding the role of the miR-143/145 cluster as a tumor suppressor in breast cancer through the inhibition of ERBB3 translation. These results also support the idea that different miRNAs in a cluster can synergistically repress a given target mRNA.

Journal ArticleDOI
TL;DR: The role of erbB3-initiated signaling in the development of cancer drug resistance is focused on and the latest advances in identifying therapeutic strategies inactivating erBB3 to overcome the resistance and enhance efficacy of cancer therapeutics are discussed.
Abstract: The erbB receptors, including the epidermal growth factor receptor (EGFR), erbB2 (also known as HER2/neu), erbB3 (or HER3), and erbB4 (or HER4), are often aberrantly activated in a wide variety of human cancers. They are excellent targets for selective anti-cancer therapies because of their transmembrane location and pro-oncogenic activity. While several therapeutic agents against erbB2 and/or EGFR have been used in the treatment of human cancers with efficacy, there has been relatively less emphasis on erbB3 as a molecular target. Elevated expression of erbB3 is frequently observed in various malignancies, where it promotes tumor progression via interactions with other receptor tyrosine kinases (RTKs) due to its lack of or weak intrinsic kinase activity. Studies on the underlying mechanisms implicate erbB3 as a major cause of treatment failure in cancer therapy, mainly through activation of the PI-3 K/Akt, MEK/MAPK, and Jak/Stat signaling pathways as well as Src kinase. It is believed that inhibition of erbB3 signaling may be required to overcome therapeutic resistance and effectively treat cancers. To date, no erbB3-targeted therapy has been approved for cancer treatment. Targeting of erbB3 receptor with a monoclonal antibody (Ab) is the only strategy currently under preclinical study and clinical evaluation. In this review, we focus on the role of erbB3-initiated signaling in the development of cancer drug resistance and discuss the latest advances in identifying therapeutic strategies inactivating erbB3 to overcome the resistance and enhance efficacy of cancer therapeutics.

Journal ArticleDOI
TL;DR: It is demonstrated that patients with positive Fbxw7 expression had a better 5-year survival and FbXw7 was an independent factor for predicting the prognosis of HCC patients and that YAP may be a potential target of Fb xw7 in HCC.
Abstract: The E3 ubiquitin ligase Fbxw7 functions as a general tumor suppressor by targeting several well-known oncoproteins for ubiquitination and proteasomal degradation. However, the clinical significance of Fbxw7 and the mechanisms involved in the anti-cancer effect of Fbxw7 in HCC are not clear. The Fbxw7 and YAP expression in 60 samples of surgical resected HCC and matched normal tumor-adjacent tissues were assessed using IHC or immunoblotting. Flow cytometry, caspase 3/7 activity assay, BrdU cell proliferation assay and MTT assay were used to detect proliferation and apoptosis of HCC cells. The regulatory effect of Fbxw7 on YAP in HCC cells was confirmed by qRT-PCR, immunoblotting and immunofluorescence. Co-immunoprecipitation was used to analyze interaction between YAP and Fbxw7. Nude mice subcutaneous injection, Ki-67 staining and TUNEL assay were used to evaluate tumor growth and apoptosis in vivo. In this study, we found that Fbxw7 expression was impaired in HCC tissues and loss of Fbxw7 expression was correlated with poor clinicopathological features including large tumor size, venous infiltration, high pathological grading and advanced TNM stage. Additionally, we demonstrated that patients with positive Fbxw7 expression had a better 5-year survival and Fbxw7 was an independent factor for predicting the prognosis of HCC patients. We confirmed that Fbxw7 inhibited HCC by inducing both apoptosis and growth arrest. Elevated YAP expression was observed in the same cohort of HCC tissues. Pearson's correlation coefficient analysis indicated that Fbxw7 was inversely associated with YAP protein expression in HCC tissues. We also found that Fbxw7 regulated YAP protein abundance by targeting YAP for ubiquitination and proteasomal degradation in HCC. Furthermore, restoring YAP expression partially abrogated Fbxw7 induced HCC cell apoptosis and growth arrest in vitro and in vivo. These results indicate that Fbxw7 may serve as a prognostic marker and that YAP may be a potential target of Fbxw7 in HCC.

Journal ArticleDOI
TL;DR: The results suggest that garcinol exerts its anti-proliferative and pro-apoptotic effects through suppression of STAT3 signaling in HCC both in vitro and in vivo.
Abstract: Background: Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been linked with proliferation, survival, invasion and angiogenesis of a variety of human cancer cells, including hepatocellular carcinoma (HCC). Thus, novel agents that can suppress STAT3 activation have potential for both prevention and treatment of HCC. Here we report, garcinol, a polyisoprenylated benzophenone, could suppress STAT3 activation in HCC cell lines and in xenografted tumor of HCC in nude mice model. Experimental design: Different HCC cell lines have been treated with garcinol and the inhibition of STAT3 activation, dimerization and acetylation have been checked by immunoblotting, immuno-fluorescence, and DNA binding assays. Xenografted tumor model has been generated in nude mice using HCC cell line and effect of garcinol in the inhibition of tumor growth has been investigated. Results: Garcinol could inhibit both constitutive and interleukin (IL-6) inducible STAT3 activation in HCC cells. Computational modeling showed that garcinol could bind to the SH2 domain of STAT3 and suppress its dimerization in vitro. Being an acetyltransferase inhibitor, garcinol also inhibits STAT3 acetylation and thus impairs its DNA binding ability. The inhibition of STAT3 activation by garcinol led to the suppression of expression of various genes involved in proliferation, survival, and angiogenesis. It also suppressed proliferation and induced substantial apoptosis in HCC cells. Remarkably, garcinol inhibited the growth of human HCC xenograft tumors in athymic nu/nu mice, through the inhibition of STAT3 activation. Conclusion: Overall, our results suggest that garcinol exerts its anti-proliferative and pro-apoptotic effects through suppression of STAT3 signaling in HCC both in vitro and in vivo.

Journal ArticleDOI
TL;DR: The results indicate that LDHA up-regulation can be a predictor of poor prognosis in clear cell renal cell carcinoma, and represents a potential prognostic biomarker that can boost the accuracy of other prognostic models in patients with clear cell kidneys carcinoma.
Abstract: Over 90% of cancer-related deaths in clear cell renal cell carcinoma (RCC) are caused by tumor relapse and metastasis. Thus, there is an urgent need for new molecular markers that can potentiate the efficacy of the current clinical-based models of prognosis assessment. The objective of this study is to evaluate the potential significance of lactate dehydrogenase A (LDHA), assessed by immunohistochemical staining, as a prognostic marker in clear cell renal cell carcinoma in relation to clinicopathological features and clinical outcome. We assessed the expression of LDHA at the protein level, by immunohistochemistry, and correlated its expression with multiple clinicopathological features including tumor size, clinical stage, histological grade, disease-free and overall survival in 385 patients with primary clear cell renal cell carcinoma. We also correlated the LDHA expression with overall survival, at mRNA level, in an independent data set of 170 clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases. Cox proportional hazards models adjusted for the potential clinicopathological factors were used to test for associations between the LDHA expression and both disease-free survival and overall survival. There is statistically significant positive correlation between LDHA level of expression and tumor size, clinical stage and histological grade. Moreover, LDHA expression shows significantly inverse correlation with both disease-free survival and overall survival in patients with clear cell renal cell carcinoma. Our results are validated by examining LDHA expression, at the mRNA level, in the independent data set of clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases which also shows that higher lactate dehydrogenase A expression is associated with significantly shorter overall survival. Our results indicate that LDHA up-regulation can be a predictor of poor prognosis in clear cell renal cell carcinoma. Thus, it represents a potential prognostic biomarker that can boost the accuracy of other prognostic models in patients with clear cell renal cell carcinoma.

Journal ArticleDOI
TL;DR: Integrated analysis of microRNA, mRNA and ChIP-seq data in a model cell line supports the hypothesis that microRNA expression under hypoxia is regulated at transcriptional and post-transcriptional level, with the presence of HIF binding sites at microRNA genomic loci associated with up-regulation.
Abstract: Background In mammalians, HIF is a master regulator of hypoxia gene expression through direct binding to DNA, while its role in microRNA expression regulation, critical in the hypoxia response, is not elucidated genome wide. Our aim is to investigate in depth the regulation of microRNA expression by hypoxia in the breast cancer cell line MCF-7, establish the relationship between microRNA expression and HIF binding sites, pri-miRNA transcription and microRNA processing gene expression.

Journal ArticleDOI
TL;DR: A large number of patients in Tongji Hospital and Huazhong University of Science and Technology have had successful transplants in the past and the results suggest that further studies are needed to fully understand the role of immune checkpoints in the development of central nervous system disease.
Abstract: * Correspondence: xiaowei0041@163.com; xuhua@mail.hust.edu.cn Equal contributors Translational Medicin Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China Full list of author information is available at the end of the article

Journal ArticleDOI
Na Zhao1, Ruizhi Wang1, Liangji Zhou1, Ying Zhu1, Jiao Gong1, Shi-Mei Zhuang1 
TL;DR: It is suggested that miR-26b suppresses NF-κB signaling and thereby sensitized HCC cells to the doxorubicin-induced apoptosis by inhibiting the expression of TAK1 and TAB3.
Abstract: Background: Abnormal activation of the NF-κB pathway is closely related to tumorigenesis and chemoresistance Therefore, microRNAs that possess the NF-κB inhibitory activity may provide novel targets for anti-cancer therapy miR-26 family members have been shown to be frequently downregulated in hepatocellular carcinoma (HCC) and correlated with the poor survival of HCC patients To date, there is no report disclosing the regulatory role of miR-26 on the NF-κB pathway and its biological significance Methods: The effects of miR-26b on the NF-κB signaling pathway and the chemosensitivity of cancer cells were examined in two HCC cell lines, QGY-7703 and MHCC-97H, using both gain- and loss-of-function studies The correlation between miR-26b level and apoptosis rate was further investigated in clinical HCC specimens Results: Both TNFα and doxorubicin treatment activated the NF-κB signaling pathway in HCC cells However, the restoration of miR-26b expression significantly inhibited the phosphorylation of IκBα and p65, blocked the nuclear translocation of NF-κB, reduced the NF-κB reporter activity, and consequently abrogated the expression of NF-κB target genes in TNFα or doxorubicin-treated HCC cells Furthermore, the ectopic expression of miR-26b dramatically sensitized HCC cells to the doxorubicin-induced apoptosis, whereas the antagonism of miR-26b attenuated cell apoptosis Consistently, the miR-26b level was positively correlated with the apoptosis rate in HCC tissues Subsequent investigations revealed that miR-26b inhibited the expression of TAK1 and TAB3, two positive regulators of NF-κB pathway, by binding to their 3’-untranslated region Moreover, knockdown of TAK1 or TAB3 phenocopied the effects of miR-26b overexpression Conclusions: These data suggest that miR-26b suppresses NF-κB signaling and thereby sensitized HCC cells to the doxorubicin-induced apoptosis by inhibiting the expression of TAK1 and TAB3 Our findings highlight miR-26b as a potent inhibitor of the NF-κB pathway and an attractive target for cancer treatment

Journal ArticleDOI
TL;DR: Recent approaches suggest that therapies target EMT and CSCs may cast a new light on the treatment of castration-resistant prostate cancer (CRPC) in the future.
Abstract: An important clinical challenge in prostate cancer therapy is the inevitable transition from androgen-sensitive to castration-resistant and metastatic prostate cancer. Albeit the androgen receptor (AR) signaling axis has been targeted, the biological mechanism underlying the lethal event of androgen independence remains unclear. New emerging evidences indicate that epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) play crucial roles during the development of castration-resistance and metastasis of prostate cancer. Notably, EMT may be a dynamic process. Castration can induce EMT that may enhance the stemness of CSCs, which in turn results in castration-resistance and metastasis. Reverse of EMT may attenuate the stemness of CSCs and inhibit castration-resistance and metastasis. These prospective approaches suggest that therapies target EMT and CSCs may cast a new light on the treatment of castration-resistant prostate cancer (CRPC) in the future. Here we review recent progress of EMT and CSCs in CRPC.

Journal ArticleDOI
TL;DR: The results show that the miR-126 shuttled by exosomes is biologically active in the target cells, and support the hypothesis that exosomal miRNAs have an important role in tumor-endothelial crosstalk occurring in the bone marrow microenvironment, potentially affecting disease progression.
Abstract: Background: Recent findings indicate that exosomes released from cancer cells contain microRNAs (miRNAs) that may be delivered to cells of tumor microenvironment. Results: To elucidate whether miRNAs secreted from chronic myelogenous leukemia cells (CML) are shuttled into endothelial cells thus affecting their phenotype, we first analysed miRNAs content in LAMA84 exosomes. Among the 124 miRNAs identified in LAMA84 exosomes, we focused our attention on miR-126 which was found to be over-overexpressed in exosomes compared with producing parental cells. Transfection of LAMA84 with Cy3-labelled miR-126 and co-culture of leukemia cells with endothelial cells (EC) confirmed that miR-126 is shuttled into HUVECs. The treatment of HUVECs with LAMA84 exosomes for 24 hours reduced CXCL12 and VCAM1 expression, both at the mRNA and protein level, and negatively modulated LAMA84 motility and cells adhesion. Transfection in HUVECs of miR-126 inhibitor reversed the decrease of CXCL12 and restored the motility and adhesion of LAMA84 cells while the over-expression of miR-126, showed opposite effects. Conclusion: Our results show that the miR-126 shuttled by exosomes is biologically active in the target cells, and support the hypothesis that exosomal miRNAs have an important role in tumor-endothelial crosstalk occurring in the bone marrow microenvironment, potentially affecting disease progression.

Journal ArticleDOI
TL;DR: It is proposed that G9a contributes to multiple steps of ovarian cancer metastasis and represents a novel target to combat this deadly disease.
Abstract: Ovarian cancer (OCa) peritoneal metastasis is the leading cause of cancer–related deaths in women with limited therapeutic options available for treating it and poor prognosis, as the underlying mechanism is not fully understood. The clinicopathological correlation of G9a expression was assessed in tumor specimens of ovarian cancer patients. Knockdown or overexpression of G9a in ovarian cancer cell lines was analysed with regard to its effect on adhesion, migration, invasion and anoikis-resistance. In vivo biological functions of G9a were tested by i.p. xenograft ovarian cancer models. Microarray and quantitative RT-PCR were used to analyze G9a-regulated downstream target genes. We found that the expression of histone methyltransferase G9a was highly correlated with late stage, high grade, and serous-type OCa. Higher G9a expression predicted a shorter survival in ovarian cancer patients. Furthermore, G9a expression was higher in metastatic lesions compared with their corresponding ovarian primary tumors. Knockdown of G9a expression suppressed prometastatic cellular activities including adhesion, migration, invasion and anoikis-resistance of ovarian cancer cell lines, while G9a over-expression promoted these cellular properties. G9a depletion significantly attenuated the development of ascites and tumor nodules in a peritoneal dissemination model. Importantly, microarray and quantitative RT-PCR analysis revealed that G9a regulates a cohort of tumor suppressor genes including CDH1, DUSP5, SPRY4, and PPP1R15A in ovarian cancer. Expression of these genes was also inversely correlated with G9a expression in OCa specimens. We propose that G9a contributes to multiple steps of ovarian cancer metastasis and represents a novel target to combat this deadly disease.

Journal ArticleDOI
TL;DR: It is demonstrated that miR-181a expression is associated with CRC liver metastasis and survival, and has strong tumor-promoting effects through inhibiting the expression of WIF-1, and its potential role in promoting epithelial-mesenchymal transition.
Abstract: Given the emerging role of microRNA in tumor disease progression, we investigated the association between microRNA expression, liver metastasis and prognosis of colorectal cancer. Colorectal cancer tissues from patients with or without liver metastases were profiled to identify differentially expressed microRNA. Expression profile was further assessed using quantitative reverse transcription PCR and in situ hybridization. Correlation between miR-181a expression, the most differentially expressed microRNA, between patients with and without liver metastasis, and its downstream target genes were investigated using qRT-PCR. Luciferase reporter assay was conducted to establish functional association between miR-181a and its target genes. Manipulation of miR-181a expression and its consequences in tumor growth and metastasis were demonstrated in various in vitro and in vivo models. miR-181a was revealed being the most elevated in CRC with liver metastases. miR-181a expression correlated with advanced stage, distant metastasis, and served as an independent prognostic factor of poor overall survival. Stable transfection of CRC cell lines with miR-181a promoted cell motility and invasion, as well as tumor growth and liver metastasis,while silencing its expression resulted in reduced migration and invasion. Additionally, we identified WIF-1 as direct and functional targets of miR-181a. Ectopic expression of miR-181a suppressed the epithelial markers E-cadherin and β-catenin, while enhanced the mesenchymal markers vimentin. Our data demonstrate that miR-181a expression is associated with CRC liver metastasis and survival. miR-181a has strong tumor-promoting effects through inhibiting the expression of WIF-1, and its potential role in promoting epithelial-mesenchymal transition.

Journal ArticleDOI
TL;DR: This study reveals an unprecedented function of lncRNAs MONC and MIR100HG as regulators of hematopoiesis and oncogenes in the development of myeloid leukemia.
Abstract: Long non-coding RNAs (lncRNAs) are recognized as pivotal players during developmental ontogenesis and pathogenesis of cancer. The intronic microRNA (miRNA) clusters miR-99a ~ 125b-2 and miR-100 ~ 125b-1 promote progression of acute megakaryoblastic leukemia (AMKL), an aggressive form of hematologic cancers. The function of the lncRNA hostgenes MIR99AHG (alias MONC) and MIR100HG within this ncRNA ensemble remained elusive. Here we report that lncRNAs MONC and MIR100HG are highly expressed in AMKL blasts. The transcripts were mainly localized in the nucleus and their expression correlated with the corresponding miRNA clusters. Knockdown of MONC or MIR100HG impeded leukemic growth of AMKL cell lines and primary patient samples. The development of a lentiviral lncRNA vector to ectopically express lncRNAs without perturbing their secondary structure due to improper termination of the viral transcript, allowed us to study the function of MONC independent of the miRNAs in cord blood hematopoietic stem and progenitor cells (HSPCs). We could show that MONC interfered with hematopoietic lineage decisions and enhanced the proliferation of immature erythroid progenitor cells. Our study reveals an unprecedented function of lncRNAs MONC and MIR100HG as regulators of hematopoiesis and oncogenes in the development of myeloid leukemia.

Journal ArticleDOI
TL;DR: The results suggest that up-regulation of miR-27a could suppress RKIP expression and in turn contribute to chemoresistance of lung adenocarcinoma cells to cisplatin.
Abstract: Background MicroRNAs (miRNAs) have been identified as important posttranscriptional regulators involved in various biological and pathological processes of cells, but their association with tumor chemoresistance has not been fully understood.

Journal ArticleDOI
Ying Sun1, Yunshan Wang1, Cong Fan1, Peng Gao1, Xiu-wen Wang1, Guangwei Wei1, Junmin Wei1 
TL;DR: It is indicated that estrogen acts via Gli1 to promote CSC development and EMT in ER+ BC cells, and thus could be a target of a novel treatment for ER+ breast cancer.
Abstract: Although long-term estrogen (E2) exposure is associated with increased breast cancer (BC) risk, and E2 appears to sustain growth of BC cells that express functional estrogen receptors (ERs), its role in promoting BC stem cells (CSCs) remains unclear. Considering that Gli1, part of the Sonic hedgehog (Shh) developmental pathway, has been shown to mediate CSCs, we investigated whether E2 and Gli1 could promote CSCs and epithelial-mesenchymal transition (EMT) in ER+ BC cell lines. We knocked down Gli1 in several BC cells using a doxycycline-controlled vector, and compared Gli1-knockdown cells and Gli1+ cells in behavior and expression of ER, Gli1, ALDH1 (BC-CSC marker), Shh, Ptch1 (Shh receptor) and SOX2, Nanog and Bmi-1 (CSC-associated transcriptions factors), using PCR; tissue microarrays, western blot; chromatin immunoprecipitation q-PCR, confocal immunofluorescence microscopy; fluorescence-activated cell sorting; annexin–flow cytometry (for apoptosis); mammosphere culture; and colony formation, immunohistochemistry, Matrigel and wound-scratch assays. Both mRNA and protein expressions of ER correlated with those of Gli1 and ALDH1. E2 induced Gli1 expression only in ER+ BC cells. E2 promoted CSC renewal, invasiveness and EMT in ER+/Gli1+ cells but not in Gli1-knockdown cells. Our results indicate that estrogen acts via Gli1 to promote CSC development and EMT in ER+ BC cells. These findings also imply that Gli1 mediates cancer stem cells, and thus could be a target of a novel treatment for ER+ breast cancer.

Journal ArticleDOI
TL;DR: Tumors with KRAS mutations in codons 61 and 146 account for an appreciable proportion of colorectal cancers, and their clinicopathological and molecular features appear generally similar to KRAS codon 12 or 13 mutated cancers, though statistical power was limited for codon 61 mutants.
Abstract: Background: KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods: We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results: KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P< 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P< 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P< 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.29-2.26 for codon 61 mutation; colorectal cancer-specific mortality HR = 0.86, 95% CI = 0.42-1.78 for codon 146 mutation]. (Continued on next page)

Journal ArticleDOI
TL;DR: Mechanistic investigation revealed that HMGB1 promoted the formation of the Beclin-1-PI3K-III complex through activating the mitogen-activated protein kinase-extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating autophagosome formation.
Abstract: Docetaxel resistance remains a major obstacle in the treatment of non-small cell lung cancer (NSCLC). High-mobility group box 1 (HMGB1) has been shown to promote autophagy protection in response to antitumor therapy, but the exact molecular mechanism underlying HMGB1-mediated autophagy has not been clearly defined. Lung adenocarcinoma (LAD) cells were transfected with pcDNA3.1-HMGB1 or HMGB1 shRNA, followed by docetaxel treatment. Cell viability and proliferation were tested by MTT assay and colony formation assay, respectively. Annexin V flow cytometric analysis and western blot analysis of activated caspase3 and cleaved PARP were used to evaluate apoptosis, while immunofluorescence microscopy and transmission electron microscopy were applied to assess autophagy activity. The formation of the Beclin-1-PI3K-III complex was examined by immunoprecipitation analysis. NOD/SCID mice were inoculated with docetaxel-resistant SPC-A1/DTX cells transfected with control or HMGB1 shRNA. HMGB1 translocated from the nucleus to the cytoplasm in LAD cells exposed to docetaxel and acted as a positive regulator of autophagy, which inhibited apoptosis and increased drug resistance. Suppression of HMGB1 restored the sensitivity of LAD cells to docetaxel both in vivo and in vitro. Mechanistic investigation revealed that HMGB1 promoted the formation of the Beclin-1-PI3K-III complex through activating the mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating autophagosome formation. Our results demonstrated that HMGB1-regulated autophagy is a significant contributor to docetaxel resistance in LAD cells. Suppression of HMGB1 or limiting HMGB1 cytosolic translocation diminished autophagic protection in response to docetaxel in LAD cells.

Journal ArticleDOI
TL;DR: A comprehensive characterization of the largest series of claudin-low (CL) subtype of breast cancer samples reported so far is provided, suggesting a larger heterogeneity than in basal and luminal A subtypes.
Abstract: The lastly identified claudin-low (CL) subtype of breast cancer (BC) remains poorly described as compared to the other molecular subtypes. We provide a comprehensive characterization of the largest series of CL samples reported so far. From a data set of 5447 invasive BC profiled using DNA microarrays, we identified 673 CL samples (12,4%) that we describe comparatively to the other molecular subtypes at several levels: clinicopathological, genomic, transcriptional, survival, and response to chemotherapy. CL samples display profiles different from other subtypes. For example, they differ from basal tumors regarding the hormone receptor status, with a lower frequency of triple negative (TN) tumors (52% vs 76% for basal cases). Like basal tumors, they show high genomic instability with many gains and losses. At the transcriptional level, CL tumors are the most undifferentiated tumors along the mammary epithelial hierarchy. Compared to basal tumors, they show enrichment for epithelial-to-mesenchymal transition markers, immune response genes, and cancer stem cell–like features, and higher activity of estrogen receptor (ER), progesterone receptor (PR), EGFR, SRC and TGFβ pathways, but lower activity of MYC and PI3K pathways. The 5-year disease-free survival of CL cases (67%) and the rate of pathological complete response (pCR) to primary chemotherapy (32%) are close to those of poor-prognosis and good responder subtypes (basal and ERBB2-enriched). However, the prognostic features of CL tumors are closer to those observed in the whole BC series and in the luminal A subtype, including proliferation-related gene expression signatures (GES). Immunity-related GES valuable in basal breast cancers are not significant in CL tumors. By contrast, the GES predictive for pCR in CL tumors resemble more to those of basal and HER2-enriched tumors than to those of luminal A tumors. Many differences exist between CL and the other subtypes, notably basal. An unexpected finding concerns the relatively high numbers of ER-positive and non-TN tumors within CL subtype, suggesting a larger heterogeneity than in basal and luminal A subtypes.

Journal ArticleDOI
TL;DR: The results demonstrate the importance of NaV1.5 in the metastatic colonisation of organs by breast cancer cells and indicate that small molecules interfering with NaV activity, such as ranolazine, may represent powerful pharmacological tools to inhibit metastatic development and improve cancer treatments.
Abstract: NaV1.5 voltage-gated sodium channels are abnormally expressed in breast tumours and their expression level is associated with metastatic occurrence and patients’ death. In breast cancer cells, NaV1.5 activity promotes the proteolytic degradation of the extracellular matrix and enhances cell invasiveness. In this study, we showed that the extinction of NaV1.5 expression in human breast cancer cells almost completely abrogated lung colonisation in immunodepressed mice (NMRI nude). Furthermore, we demonstrated that ranolazine (50 μM) inhibited NaV1.5 currents in breast cancer cells and reduced NaV1.5-related cancer cell invasiveness in vitro. In vivo, the injection of ranolazine (50 mg/kg/day) significantly reduced lung colonisation by NaV1.5-expressing human breast cancer cells. Taken together, our results demonstrate the importance of NaV1.5 in the metastatic colonisation of organs by breast cancer cells and indicate that small molecules interfering with NaV activity, such as ranolazine, may represent powerful pharmacological tools to inhibit metastatic development and improve cancer treatments.

Journal ArticleDOI
TL;DR: Evidence is provided for the existance of a posititve feedback loop connecting survivin expression in tumor cells to PI3K/Akt enhanced β-catenin-Tcf/Lef-dependent transcription followed by secretion of VEGF and angiogenesis.
Abstract: Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These findings provide evidence for the existance of a posititve feedback loop connecting survivin expression in tumor cells to PI3K/Akt enhanced β-catenin-Tcf/Lef-dependent transcription followed by secretion of VEGF and angiogenesis.