scispace - formally typeset
Search or ask a question

Showing papers by "Edward L. Wright published in 2003"


Journal ArticleDOI
TL;DR: In this article, the authors find that the emerging standard model of cosmology, a flat -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data.
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

10,650 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey, which are consistent with the 7 in. full-width at half-maximum (FWHM) Cosmic Background Explorer (COBE) maps.
Abstract: We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error level is well specified. The cosmic microwave background (CMB) is separated from the foregrounds using multifrequency data. The sky maps are consistent with the 7 in. full-width at half-maximum (FWHM) Cosmic Background Explorer (COBE) maps. We report more precise, but consistent, dipole and quadrupole values. The CMB anisotropy obeys Gaussian statistics with -58 less than f(sub NL) less than 134 (95% CL). The 2 less than or = l less than or = 900 anisotropy power spectrum is cosmic variance limited for l less than 354 with a signal-to-noise ratio greater than 1 per mode to l = 658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large angle correlation from reionization. The optical depth of reionization is tau = 0.17 +/- 0.04, which implies a reionization epoch of t(sub r) = 180(sup +220, sub -80) Myr (95% CL) after the Big Bang at a redshift of z(sub r) = 20(sup +10, sub -9) (95% CL) for a range of ionization scenarios. This early reionization is incompatible with the presence of a significant warm dark matter density. A best-fit cosmological model to the CMB and other measures of large scale structure works remarkably well with only a few parameters. The age of the best-fit universe is t(sub 0) = 13.7 +/- 0.2 Gyr old. Decoupling was t(sub dec) = 379(sup +8, sub -7)kyr after the Big Bang at a redshift of z(sub dec) = 1089 +/- 1. The thickness of the decoupling surface was Delta(sub z(sub dec)) = 195 +/- 2. The matter density of the universe is Omega(sub m)h(sup 2) = 0.135(sup +0.008, sub -0.009) the baryon density is Omega(sub b)h(sup 2) = 0.0224 +/- 0.0009, and the total mass-energy of the universe is Omega(sub tot) = 1.02 +/- 0.02. There is progressively less fluctuation power on smaller scales, from WMAP to fine scale CMB measurements to galaxies and finally to the Ly-alpha forest. This is accounted for with a running spectral index, significant at the approx. 2(sigma) level. The spectral index of scalar fluctuations is fit as n(sub s) = 0.93 +/-0.03 at wavenumber k(sub o) = 0.05/Mpc ((sub eff) approx. = 700), with a slope of dn(sub s)/d I(sub nk) = -0.031(sup + 0.016, sub -0.018) in the best-fit model.

4,821 citations


Journal ArticleDOI
Abstract: We present full sky microwave maps in five bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are 1 per mode to l=658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large angle correlation from reionization. The optical depth of reionization is 0.17 +/- 0.04, which implies a reionization epoch of 180+220-80 Myr (95% CL) after the Big Bang at a redshift of 20+10-9 (95% CL) for a range of ionization scenarios. This early reionization is incompatible with the presence of a significant warm dark matter density. The age of the best-fit universe is 13.7 +/- 0.2 Gyr old. Decoupling was 379+8-7 kyr after the Big Bang at a redshift of 1089 +/- 1. The thickness of the decoupling surface was dz=195 +/- 2. The matter density is Omega_m h^2 = 0.135 +0.008 -0.009, the baryon density is Omega_b h^2 = 0.0224 +/- 0.0009, and the total mass-energy of the universe is Omega_tot = 1.02 +/- 0.02. The spectral index of scalar fluctuations is fit as n_s = 0.93 +/- 0.03 at wavenumber k_0 = 0.05 Mpc^-1, with a running index slope of dn_s/d ln k = -0.031 +0.016 -0.018 in the best-fit model. This flat universe model is composed of 4.4% baryons, 22% dark matter and 73% dark energy. The dark energy equation of state is limited to w<-0.78 (95% CL). Inflation theory is supported with n_s~1, Omega_tot~1, Gaussian random phases of the CMB anisotropy, and superhorizon fluctuations. An admixture of isocurvature modes does not improve the fit. The tensor-to-scalar ratio is r(k_0=0.002 Mpc^-1)<0.90 (95% CL).

3,868 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the Wilkinson Microwave Anisotropy Probe (WMAP) data, in combination with complementary small-scale cosmic microwave background (CMB) measurements and large-scale structure data.
Abstract: We confront predictions of inflationary scenarios with the Wilkinson Microwave Anisotropy Probe (WMAP) data, in combination with complementary small-scale cosmic microwave background (CMB) measurements and large-scale structure data. The WMAP detection of a large-angle anticorrelation in the temperature-polarization cross-power spectrum is the signature of adiabatic superhorizon fluctuations at the time of decoupling. The WMAP data are described by pure adiabatic fluctuations: we place an upper limit on a correlated cold dark matter (CDM) isocurvature component. Using WMAP constraints on the shape of the scalar power spectrum and the amplitude of gravity waves, we explore the parameter space of inflationary models that is consistent with the data. We place limits on inflationary models; for example, a minimally coupled λ4 is disfavored at more than 3 σ using WMAP data in combination with smaller scale CMB and large-scale structure survey data. The limits on the primordial parameters using WMAP data alone are ns(k0 = 0.002 Mpc-1) = 1.20, dns/d ln k = -0.077, A(k0 = 0.002 Mpc-1) = 0.71 (68% CL), and r(k0 = 0.002 Mpc-1) < 1.28 (95% CL).

1,093 citations


Journal ArticleDOI
TL;DR: In this article, the authors used a maximum entropy method to construct a model of the Galactic emission components and showed that the model is accurate to less than 1% and individual model components are accurate to a few percent.
Abstract: The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can became out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a Maximum Entropy Method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1% and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta(sub s) approx. -2.5) near star-forming regions, especially in the plane, and steepest (beta(sub s) approx. -3) in the halo. This is consistent with a picture of relativistic cosmic ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta(sub s) less than -3. The modeled thermal dust spectral index is also steep in the WMAP bands, with beta(sub d) approx. = 2.2. Our model is driven to these conclusions by the low level of total foreground contamination at approx. 60 GHz. Microwave and Ha measurements of the ionized gas agree well with one another at about the expected levels. Spinning dust emission is limited to less than 5% of the Ka-band foreground emission. A catalog of 208 point sources is presented. The reliability of the catalog is 98%, i.e., we expect five of the 208 sources to be statistically spurious. The mean spectral index of the point sources is alpha approx. 0(beta approx. -2). Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0 +/- 1.4) x 10(exp -3)micro sq K sr at Q-band and negligible levels at V-band and W-band. The Sunyaev-Zeldovich effect is shown to be a negligible "contamination" to the maps.

972 citations


Journal ArticleDOI
TL;DR: The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies of 23, 33, 41, 61, and 94 GHz as mentioned in this paper.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies of 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 σ. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. The correlations are present in all WMAP frequency bands with similar amplitude from 23 to 94 GHz and are consistent with a superposition of a cosmic microwave background (CMB) signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales (θ 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (θ > 10°) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 < zr < 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit Λ-dominated cold dark matter model, with best-fit value τ = 0.17 ± 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.

873 citations


Journal ArticleDOI
TL;DR: In this paper, the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps is derived from 28 cross-power spectra of statistically independent channels.
Abstract: We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal Point sources produce a modest contamination in the low frequency data After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000 Systematic errors are negligible compared to the (modest) level of foreground emission Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels The final spectrum is essentially independent of the noise properties of an individual radiometer The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350 The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering

808 citations


Journal ArticleDOI
TL;DR: The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are present in all WMAP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales theta 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta > 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 < z_r < 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit LambdaCDM model, with best fit value tau = 0.17 +- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.

781 citations


Journal ArticleDOI
TL;DR: In this article, the amplitude of non-Gaussian primordial fluctuations in the WMAP 1 yr cosmic microwave background sky maps has been investigated and limits on the amplitude are established, -58 < fNL < 134 at 95% confidence.
Abstract: We present limits to the amplitude of non-Gaussian primordial fluctuations in the WMAP 1 yr cosmic microwave background sky maps. A nonlinear coupling parameter, fNL, characterizes the amplitude of a quadratic term in the primordial potential. We use two statistics: one is a cubic statistic which measures phase correlations of temperature fluctuations after combining all configurations of the angular bispectrum. The other uses the Minkowski functionals to measure the morphology of the sky maps. Both methods find the WMAP data consistent with Gaussian primordial fluctuations and establish limits, -58 < fNL < 134, at 95% confidence. There is no significant frequency or scale dependence of fNL. The WMAP limit is 30 times better than COBE and validates that the power spectrum can fully characterize statistical properties of CMB anisotropy in the WMAP data to a high degree of accuracy. Our results also validate the use of a Gaussian theory for predicting the abundance of clusters in the local universe. We detect a point-source contribution to the bispectrum at 41 GHz, bsrc = (9.5 ? 4.4) ? 10-5 ?K3 sr2, which gives a power spectrum from point sources of csrc = (15 ? 6) ? 10-3 ?K2 sr in thermodynamic temperature units. This value agrees well with independent estimates of source number counts and the power spectrum at 41 GHz, indicating that bsrc directly measures residual source contributions.

591 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compare the Wilkinson Microwave Anisotropy Probe (WMAP) measurements of the cosmic microwave background (CMB) and other complementary data sets to theoretical models.
Abstract: We describe our methodology for comparing the Wilkinson Microwave Anisotropy Probe (WMAP) measurements of the cosmic microwave background (CMB) and other complementary data sets to theoretical models. The unprecedented quality of the WMAP data and the tight constraints on cosmological parameters that are derived require a rigorous analysis so that the approximations made in the modeling do not lead to significant biases. We describe our use of the likelihood function to characterize the statistical properties of the microwave background sky. We outline the use of the Monte Carlo Markov Chains to explore the likelihood of the data given a model to determine the best-fit cosmological parameters and their uncertainties. We add to the WMAP data the l 700 Cosmic Background Imager (CBI) and Arcminute Cosmology Bolometer Array Receiver (ACBAR) measurements of the CMB, the galaxy power spectrum at z ~ 0 obtained from the Two-Degree Field Galaxy Redshift Survey (2dFGRS), and the matter power spectrum at z ~ 3 as measured with the Lyα forest. These last two data sets complement the CMB measurements by probing the matter power spectrum of the nearby universe. Combining CMB and 2dFGRS requires that we include in our analysis a model for galaxy bias, redshift distortions, and the nonlinear growth of structure. We show how the statistical and systematic uncertainties in the model and the data are propagated through the full analysis.

556 citations


Journal ArticleDOI
TL;DR: The MAP mission as mentioned in this paper was designed to determine the geometry, content and evolution of the universe via a 13' full width half-maximum (FWHM) resolution full-sky map of the temperature anisotropy of the cosmic microwave background radiation with uncorrelated pixel noise, minimal systematic errors, multifrequency observations, and accurate calibration.
Abstract: The purpose of the MAP mission is to determine the geometry, content, and evolution of the universe via a 13' full width half-maximum (FWHM) resolution full-sky map of the temperature anisotropy of the cosmic microwave background radiation with uncorrelated pixel noise, minimal systematic errors, multifrequency observations, and accurate calibration. These attributes were key factors in the success of NASA's Cosmic Background Explorer (COBE) mission, which made a 7° FWHM resolution full sky map, discovered temperature anisotropy, and characterized the fluctuations with two parameters, a power spectral index and a primordial amplitude. Following COBE, considerable progress has been made in higher resolution measurements of the temperature anisotropy. With 45 times the sensitivity and 33 times the angular resolution of the COBE mission, MAP will vastly extend our knowledge of cosmology. MAP will measure the physics of the photon-baryon fluid at recombination. From this, MAP measurements will constrain models of structure formation, the geometry of the universe, and inflation. In this paper we present a prelaunch overview of the design and characteristics of the MAP mission. This information will be necessary for a full understanding of the MAP data and results, and will also be of interest to scientists involved in the design of future cosmic microwave background experiments and/or space science missions.

Journal ArticleDOI
TL;DR: In this article, the emerging standard model of cosmology, a flat Lambda-dominated universe seeded by nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data.
Abstract: WMAP precision data enables accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat Lambda-dominated universe seeded by nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. With parameters fixed only by WMAP data, we can fit finer scale CMB measurements and measurements of large scle structure (galaxy surveys and the Lyman alpha forest). This simple model is also consistent with a host of other astronomical measurements. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements and Lyman alpha forest data to find the model's best fit cosmological parameters: h=0.71+0.04-0.03, Omega_b h^2=0.0224+-0.0009, Omega_m h^2=0.135+0.008-0.009, tau=0.17+-0.06, n_s(0.05/Mpc)=0.93+-0.03, and sigma_8=0.84+-0.04. WMAP's best determination of tau=0.17+-0.04 arises directly from the TE data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13.7+-0.2 Gyr. The data favors but does not require a slowly varying spectral index. By combining WMAP data with other astronomical data sets, we constrain the geometry of the universe, Omega_tot = 1.02 +- 0.02, the equation of state of the dark energy w = -1), and the energy density in stable neutrinos, Omega_nu h^2 < 0.0076 (95% confidence limit). For 3 degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter.

Journal ArticleDOI
TL;DR: The MAP mission as discussed by the authors was designed to determine the geometry, content and evolution of the universe via a 13 arcmin full-width-half-max (FWHM) resolution full sky map of the temperature anisotropy of the cosmic microwave background radiation with uncorrelated pixel noise, minimal systematic errors, multifrequency observations, and accurate calibration.
Abstract: The purpose of the MAP mission is to determine the geometry, content, and evolution of the universe via a 13 arcmin full-width-half-max (FWHM) resolution full sky map of the temperature anisotropy of the cosmic microwave background radiation with uncorrelated pixel noise, minimal systematic errors, multifrequency observations, and accurate calibration. These attributes were key factors in the success of NASA's Cosmic Background Explorer (COBE) mission, which made a 7 degree FWHM resolution full sky map, discovered temperature anisotropy, and characterized the fluctuations with two parameters, a power spectral index and a primordial amplitude. Following COBE considerable progress has been made in higher resolution measurements of the temperature anisotropy. With 45 times the sensitivity and 33 times the angular resolution of the COBE mission, MAP will vastly extend our knowledge of cosmology. MAP will measure the physics of the photon-baryon fluid at recombination. From this, MAP measurements will constrain models of structure formation, the geometry of the universe, and inflation. In this paper we present a pre-launch overview of the design and characteristics of the MAP mission. This information will be necessary for a full understanding of the MAP data and results, and will also be of interest to scientists involved in the design of future cosmic microwave background experiments and/or space science missions.

Journal ArticleDOI
TL;DR: In this paper, a scaling relation for the temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE) was introduced, and a new scaling relation was introduced for the TE amplitude ratio, which is based on a flat adiabatic LambdaCDM model with the goal of showing how the cosmic baryon density, Omega-b h^2, matter density, and Omega-m istg^2 were encoded in their positions and amplitudes.
Abstract: The CMB has distinct peaks in both its temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE). From the WMAP data we find the first peak in the temperature spectrum at l = 220.1 +- 0.8 with an amplitude of 74.7 +- 0.5 microK; the first trough at l = 411.7 +- 3.5 with an amplitude of 41.0 +- 0.5 microK; and the second peak at l = 546 +- 10 with an amplitude of 48.8 +- 0.9 microK. The TE spectrum has an antipeak at l = 137 +- 9 with a cross-power of -35 +- 9 microK^2, and a peak at l = 329 +- 19 with cross-power 105 +- 18 microK^2. All uncertainties are 1 sigma and include calibration and beam errors. An intuition for how the data determine the cosmological parameters may be gained by limiting one's attention to a subset of parameters and their effects on the peak characteristics. We interpret the peaks in the context of a flat adiabatic LambdaCDM model with the goal of showing how the cosmic baryon density, Omega_b h^2, matter density, Omega_m h^2, scalar index, n_s, and age of the universe are encoded in their positions and amplitudes. To this end, we introduce a new scaling relation for the TE antipeak-to-peak amplitude ratio and recompute known related scaling relations for the TT spectrum in light of the WMAP data. From the scaling relations, we show that WMAP's tight bound on Omega_b h^2 is intimately linked to its robust detection of the first and second peaks of the TT spectrum.

Journal ArticleDOI
TL;DR: In this article, the authors describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations.
Abstract: We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.

Journal ArticleDOI
TL;DR: The first-year WMAP data, in combination with any one of a number of other cosmic probes, show that we live in a flat Lambda-dominated CDM universe as discussed by the authors.
Abstract: The first-year WMAP data, in combination with any one of a number of other cosmic probes, show that we live in a flat \Lambda-dominated CDM universe with \Omega_m ~ 0.27 and \Omega_\Lambda ~ 0.73. In this model the late-time action of the dark energy, through the integrated Sachs-Wolfe effect, should produce CMB anisotropies correlated with matter density fluctuations at z 0 (95% CL, statistical errors only) with the peak of the likelihood at \Omega_\Lambda=0.68, consistent with the preferred WMAP value. A closed model with \Omega_m=1.28, h=0.33, and no dark energy component (\Omega_\Lambda=0), marginally consistent with the WMAP CMB TT angular power spectrum, would produce an anti-correlation between the matter distribution and the CMB. Our analysis of the cross-correlation of the WMAP data with the NVSS catalog rejects this cosmology at the 3\sigma level.

Journal ArticleDOI
TL;DR: In this paper, the main-beam intensities have been mapped to ≤-30 dB of their peak values by observing Jupiter with the satellite in the same observing mode as for CMB observations.
Abstract: Knowledge of the beam profiles is of critical importance for interpreting data from cosmic microwave background experiments. In this paper, we present the characterization of the in-flight optical response of the WMAP satellite. The main-beam intensities have been mapped to ≤-30 dB of their peak values by observing Jupiter with the satellite in the same observing mode as for CMB observations. The beam patterns closely follow the prelaunch expectations. The full width at half-maximum is a function of frequency and ranges from 082 at 23 GHz to 021 at 94 GHz; however, the beams are not Gaussian. We present (a) the beam patterns for all 10 differential radiometers, showing that the patterns are substantially independent of polarization in all but the 23 GHz channel; (b) the effective symmetrized beam patterns that result from WMAP's compound spin observing pattern; (c) the effective window functions for all radiometers and the formalism for propagating the window function uncertainty; and (d) the conversion factor from point-source flux to antenna temperature. A summary of the systematic uncertainties, which currently dominate our knowledge of the beams, is also presented. The constancy of Jupiter's temperature within a frequency band is an essential check of the optical system. The tests enable us to report a calibration of Jupiter to 1%-3% accuracy relative to the CMB dipole.

Journal ArticleDOI
TL;DR: In this paper, the authors presented the characterization of the in-flight optical response of the WMAP satellite, which is used for interpreting data from cosmic microwave background experiments and reported a calibration of Jupiter to 1-3% accuracy relative to the CMB dipole.
Abstract: Knowledge of the beam profiles is of critical importance for interpreting data from cosmic microwave background experiments. In this paper, we present the characterization of the in-flight optical response of the WMAP satellite. The main beam intensities have been mapped to < -30 dB of their peak values by observing Jupiter with the satellite in the same observing mode as for CMB observations. The beam patterns closely follow the pre-launch expectations. The full width at half maximum is a function of frequency and ranges from 0.82 degrees at 23 GHz to 0.21 degrees at 94 GHz; however, the beams are not Gaussian. We present: (a) the beam patterns for all ten differential radiometers and show that the patterns are substantially independent of polarization in all but the 23 GHz channel; (b) the effective symmetrized beam patterns that result from WMAP's compound spin observing pattern; (c) the effective window functions for all radiometers and the formalism for propagating the window function uncertainty; and (d) the conversion factor from point source flux to antenna temperature. A summary of the systematic uncertainties, which currently dominate our knowledge of the beams, is also presented. The constancy of Jupiter's temperature within a frequency band is an essential check of the optical system. The tests enable us to report a calibration of Jupiter to 1-3% accuracy relative to the CMB dipole.

Journal ArticleDOI
TL;DR: The Microwave Anisotropy Probe (MAP) satellite, launched 2001 June 30, will produce full sky maps of the cosmic microwave background radiation in five frequency bands spanning 20-106 GHz as discussed by the authors.
Abstract: The Microwave Anisotropy Probe (MAP) satellite, launched 2001 June 30, will produce full sky maps of the cosmic microwave background radiation in five frequency bands spanning 20-106 GHz. MAP contains 20 differential radiometers built with High Electron Mobility Transistor (HEMT) amplifiers with passively cooled input stages. The design and test techniques used to evaluate and minimize systematic errors and the prelaunch performance of the radiometers for all five bands are presented.

Journal ArticleDOI
TL;DR: The WMAP satellite has completed 1 year of measurements of the cosmic microwave background (CMB) radiation using 20 differential high electron mobility transistor (HEMT) based radiometers, and characterizations of the on-orbit radiometer performance are presented, with an emphasis on properties required for the production of sky maps from the time-ordered data as mentioned in this paper.
Abstract: The WMAP satellite has completed 1 year of measurements of the cosmic microwave background (CMB) radiation using 20 differential high electron mobility transistor (HEMT) based radiometers. All the radiometers are functioning nominally, and characterizations of the on-orbit radiometer performance are presented, with an emphasis on properties that are required for the production of sky maps from the time-ordered data. A radiometer gain model, used to smooth and interpolate the CMB dipole gain measurements, is also presented. No degradation in the sensitivity of any of the radiometers has been observed during the first year of observations.

Journal ArticleDOI
TL;DR: The Microwave Anisotropy Probe satellite, launched 2001 June 30, will produce full sky maps of the cosmic microwave background radiation in five frequency bands spanning 20-106 GHz.
Abstract: The Microwave Anisotropy Probe (MAP) satellite, launched June 30, 2001, will produce full sky maps of the cosmic microwave background radiation in 5 frequency bands spanning 20 - 106 GHz. MAP contains 20 differential radiometers built with High Electron Mobility Transistor (HEMT) amplifiers with passively cooled input stages. The design and test techniques used to evaluate and minimize systematic errors and the pre-launch performance of the radiometers for all five bands are presented.

Journal ArticleDOI
TL;DR: The MAP satellite as discussed by the authors is a differential microwave radiometer that makes high-fidelity polarization-sensitive maps of the full sky in five frequency bands between 20 and 100 GHz, from which the properties of the cosmic microwave background (CMB) anisotropy and Galactic and extragalactic emission are characterized.
Abstract: The primary goal of the MAP satellite, now in orbit, is to make high-fidelity polarization-sensitive maps of the full sky in five frequency bands between 20 and 100 GHz. From these maps we will characterize the properties of the cosmic microwave background (CMB) anisotropy and Galactic and extragalactic emission on angular scales ranging from the effective beam size, less than 023, to the full sky. MAP is a differential microwave radiometer. Two back-to-back shaped offset Gregorian telescopes feed two mirror symmetric arrays of 10 corrugated feeds. We describe the prelaunch design and characterization of the optical system, compare the optical models to the measurements, and consider multiple possible sources of systematic error.

Journal ArticleDOI
TL;DR: In this paper, the authors present the level of contamination due to sidelobes for the first-year CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) observatory.
Abstract: Since the Galactic center is ~1000 times brighter than fluctuations in the cosmic microwave background (CMB), CMB experiments must carefully account for stray Galactic pickup. We present the level of contamination due to sidelobes for the first-year CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) observatory. For each radiometer, full 4π sr antenna gain patterns are determined from a combination of numerical prediction and ground-based and space-based measurements. These patterns are convolved with the WMAP first-year sky maps and observatory scan pattern to generate the expected sidelobe signal contamination, for both intensity and polarized microwave sky maps. When the main beams are outside of the Galactic plane, we find rms values for the expected sidelobe pickup of 15, 2.1, 2.0, 0.3, and 0.5 μK for the K, Ka, Q, V, and W bands, respectively. Except for at the K band, the rms polarized contamination is 1 μK. Angular power spectra of the Galactic pickup are presented.

Journal ArticleDOI
TL;DR: In this paper, full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the CMB from foreground emission and the effectiveness of template fits to remove foreground emission from the WMAP data is examined.
Abstract: Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the CMB from foreground emission. We define masks that excise regions of high foreground emission. The effectiveness of template fits to remove foreground emission from the WMAP data is examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We construct a model of the Galactic emission components. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta ~ -2.5) near star-forming regions, especially in the plane, and steepest (beta ~ -3) in the halo. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta < -3. The modeled thermal dust spectral index is also steep in the WMAP bands, with beta ~ 2.2. Microwave and H alpha measurements of the ionized gas agree. Spinning dust emission is limited to < ~5% of the Ka-band foreground emission. A catalog of 208 point sources is presented. Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0 +- 1.4) 10^{-3} microK^2 sr at Q-band and negligible levels at V-band and W-band.

Journal ArticleDOI
TL;DR: In this paper, the amplitude of non-Gaussian primordial fluctuations in the WMAP 1-year cosmic microwave background sky maps has been investigated and the amplitude is shown to be -58
Abstract: We present limits to the amplitude of non-Gaussian primordial fluctuations in the WMAP 1-year cosmic microwave background sky maps. A non-linear coupling parameter, f_NL, characterizes the amplitude of a quadratic term in the primordial potential. We use two statistics: one is a cubic statistic which measures phase correlations of temperature fluctuations after combining all configurations of the angular bispectrum. The other uses the Minkowski functionals to measure the morphology of the sky maps. Both methods find the WMAP data consistent with Gaussian primordial fluctuations and establish limits, -58

Journal ArticleDOI
TL;DR: In this article, the authors compare the WMAP measurements of the cosmic microwave background (CMB) and other complementary data sets to theoretical models, using the Monte Carlo Markov Chains to explore the likelihood of the data given a model to determine the best fit cosmological parameters and their uncertainties.
Abstract: We describe our methodology for comparing the WMAP measurements of the cosmic microwave background (CMB) and other complementary data sets to theoretical models. The unprecedented quality of the WMAP data, and the tight constraints on cosmological parameters that are derived, require a rigorous analysis so that the approximations made in the modeling do not lead to significant biases. We describe our use of the likelihood function to characterize the statistical properties of the microwave background sky. We outline the use of the Monte Carlo Markov Chains to explore the likelihood of the data given a model to determine the best fit cosmological parameters and their uncertainties. We add to the WMAP data the l>~700 CBI and ACBAR measurements of the CMB, the galaxy power spectrum at z~0 obtained from the 2dF galaxy redshift survey (2dFGRS), and the matter power spectrum at z~3 as measured with the Ly alpha forest. These last two data sets complement the CMB measurements by probing the matter power spectrum of the nearby universe. Combining CMB and 2dFGRS requires that we include in our analysis a model for galaxy bias, redshift distortions, and the non-linear growth of structure. We show how the statistical and systematic uncertainties in the model and the data are propagated through the full analysis.

01 Jan 2003
TL;DR: The theoretical basis for the prediction of anisotropies in the cosmic microwave background is very well developed as mentioned in this paper, and all of the primary anisotropy can be handled by linear perturbation theory, which allows a very accurate calculation of predicted anisotropic from different models of the Universe.
Abstract: The theoretical basis for the prediction of anisotropies in the cosmic microwave background is very well developed. Very low amplitude density and temperature perturbations produce small gravitational effects, leading to an anisotropy that is a combination of temperature fluctuations at the surface of last scattering and gravitational redshifts both at last scattering and along the path to the observer. All of the primary anisotropy can be handled by linear perturbation theory, which allows a very accurate calculation of the predicted anisotropy from different models of the Universe. 1.

Posted Content
TL;DR: The theoretical basis for the prediction of anisotropies in the cosmic microwave background is very well developed as mentioned in this paper, and very low amplitude density and temperature perturbations produce small gravitational effects, leading to an anisotropic that is a combination of temperature fluctuations at the surface of last scattering and gravitational redshifts both at last scattering, and along the path to the observer.
Abstract: The theoretical basis for the prediction of anisotropies in the cosmic microwave background is very well developed Very low amplitude density and temperature perturbations produce small gravitational effects, leading to an anisotropy that is a combination of temperature fluctuations at the surface of last scattering and gravitational redshifts both at last scattering and along the path to the observer All of the primary anisotropy can be handled by linear perturbation theory, which allows a very accurate calculation of the predicted anisotropy from different models of the Universe

Journal ArticleDOI
TL;DR: In this article, the authors describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations.
Abstract: We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of 1/f noise. We infer and correct for a small ~1% transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.

Journal ArticleDOI
TL;DR: The Wilkinson Microwave Anisotropy Probe (WMAP) science team has released results from the first year of operation at the Earth-Sun L2 Lagrange point as mentioned in this paper.