scispace - formally typeset
Search or ask a question

Showing papers by "Franz Hofmann published in 2018"


Journal ArticleDOI
TL;DR: It is shown that embryonic deletion of Cacna1c in forebrain glutamatergic neurons promotes the manifestation of endophenotypes related to psychiatric disorders including cognitive decline, impaired synaptic plasticity, reduced sociability, hyperactivity and increased anxiety.
Abstract: Single-nucleotide polymorphisms (SNPs) in CACNA1C, the α1C subunit of the voltage-gated L-type calcium channel Cav1.2, rank among the most consistent and replicable genetics findings in psychiatry and have been associated with schizophrenia, bipolar disorder and major depression. However, genetic variants of complex diseases often only confer a marginal increase in disease risk, which is additionally influenced by the environment. Here we show that embryonic deletion of Cacna1c in forebrain glutamatergic neurons promotes the manifestation of endophenotypes related to psychiatric disorders including cognitive decline, impaired synaptic plasticity, reduced sociability, hyperactivity and increased anxiety. Additional analyses revealed that depletion of Cacna1c during embryonic development also increases the susceptibility to chronic stress, which suggest that Cav1.2 interacts with the environment to shape disease vulnerability. Remarkably, this was not observed when Cacna1c was deleted in glutamatergic neurons during adulthood, where the later deletion even improved cognitive flexibility, strengthened synaptic plasticity and induced stress resilience. In a parallel gene × environment design in humans, we additionally demonstrate that SNPs in CACNA1C significantly interact with adverse life events to alter the risk to develop symptoms of psychiatric disorders. Overall, our results further validate Cacna1c as a cross-disorder risk gene in mice and humans, and additionally suggest a differential role for Cav1.2 during development and adulthood in shaping cognition, sociability, emotional behavior and stress susceptibility. This may prompt the consideration for pharmacological manipulation of Cav1.2 in neuropsychiatric disorders with developmental and/or stress-related origins.

119 citations


Journal ArticleDOI
TL;DR: It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure, however, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.
Abstract: The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.

37 citations


Journal ArticleDOI
TL;DR: Evidence is provided that PKGs are essential mediators of the antifibrotic effects of sGC stimulators through interfering with non-canonical TGFβ signalling.
Abstract: Objectives Stimulators of soluble guanylate cyclase (sGC) are currently investigated in clinical trials for the treatment of fibrosis in systemic sclerosis (SSc). In this study, we aim to investigate the role of protein kinases G (PKG) as downstream mediators of sGC–cyclic guanosine monophosphate (cGMP) in SSc. Methods Mice with combined knockout of PKG1 and 2 were challenged with bleomycin and treated with the sGC stimulator BAY 41-2272. Fibroblasts were treated with BAY 41-2272 and with the PKG inhibitor KT 5823. Results PKG1 and 2 are upregulated in SSc in a transforming growth factor-β1 (TGFβ1)-dependent manner, as an attempt to compensate for the decreased signalling through the sGC–cGMP–PKG pathway. Inhibition or knockout of PKG1 and 2 abrogates the inhibitory effects of sGC stimulation on fibroblast activation in a SMAD-independent, but extracellular signal-regulated kinase (ERK)-dependent manner. In vivo, sGC stimulation fails to prevent bleomycin-induced fibrosis in PKG1 and 2 knockout mice. Conclusions Our data provide evidence that PKGs are essential mediators of the antifibrotic effects of sGC stimulators through interfering with non-canonical TGFβ signalling. TGFβ1 promotes its profibrotic effects through inhibition of sGC–cGMP–PKG signalling, sGC stimulation exerts its antifibrotic effects by inhibition of TGFβ1-induced ERK phosphorylation.

33 citations


Journal ArticleDOI
TL;DR: A novel neurobiological mechanism of cGKII-mediated synaptic hyperexcitation in HAND is provided, which suggests that HIV gp120 and FIV gp95 share a core pathological process in neurons.
Abstract: Over half of individuals infected with human immunodeficiency virus (HIV) suffer from HIV-associated neurocognitive disorders (HANDs), yet the molecular mechanisms leading to neuronal dysfunction are poorly understood. Feline immunodeficiency virus (FIV) naturally infects cats and shares its structure, cell tropism, and pathology with HIV, including wide-ranging neurological deficits. We employ FIV as a model to elucidate the molecular pathways underlying HIV-induced neuronal dysfunction, in particular, synaptic alteration. Among HIV-induced neuron-damaging products, HIV envelope glycoprotein gp120 triggers elevation of intracellular Ca2+ activity in neurons, stimulating various pathways to damage synaptic functions. We quantify neuronal Ca2+ activity using intracellular Ca2+ imaging in cultured hippocampal neurons and confirm that FIV envelope glycoprotein gp95 also elevates neuronal Ca2+ activity. In addition, we reveal that gp95 interacts with the chemokine receptor, CXCR4, and facilitates the release of intracellular Ca2+ by the activation of the endoplasmic reticulum (ER)-associated Ca2+ channels, inositol triphosphate receptors (IP3Rs), and synaptic NMDA receptors (NMDARs), similar to HIV gp120. This suggests that HIV gp120 and FIV gp95 share a core pathological process in neurons. Significantly, gp95’s stimulation of NMDARs activates cGMP-dependent protein kinase II (cGKII) through the activation of the neuronal nitric oxide synthase (nNOS)-cGMP pathway, which increases Ca2+ release from the ER and promotes surface expression of AMPA receptors, leading to an increase in synaptic activity. Moreover, we culture feline hippocampal neurons and confirm that gp95-induced neuronal Ca2+ overactivation is mediated by CXCR4 and cGKII. Finally, cGKII activation is also required for HIV gp120-induced Ca2+ hyperactivation. These results thus provide a novel neurobiological mechanism of cGKII-mediated synaptic hyperexcitation in HAND.

16 citations


Journal ArticleDOI
01 Jan 2018-Channels
TL;DR: The L-type calcium channel (Cav1.2) regulates cardiac contraction and is modulated by different hormones and neurotransmitter via G-proteins and protein kinases through PKC-activating hormones mediated by kinases.
Abstract: The L-type calcium channel (Cav1.2) regulates cardiac contraction and is modulated by different hormones and neurotransmitter via G-proteins and protein kinases. PKC-activating hormones mediated by...

4 citations