scispace - formally typeset
Search or ask a question

Showing papers by "Fred Jourdan published in 2020"


Journal ArticleDOI
TL;DR: A new method for high-spatial resolution targeting of small features that involves using FIB-SEM-based electron deposition of platinum “buttons” prior to standard lift-out and sharpening procedures for atom probe specimen manufacture is presented.
Abstract: Atom probe tomography (APT) is used to quantify atomic-scale elemental and isotopic compositional variations within a very small volume of material (typically <0.01 µm3). The small analytical volume ideally contains specific compositional or microstructural targets that can be placed within the context of the previously characterized surface in order to facilitate a correct interpretation of APT data. In this regard, careful targeting and preparation are paramount to ensure that the desired target, which is often smaller than 100 nm, is optimally located within the APT specimen. Needle-shaped specimens required for atom probe analysis are commonly prepared using a focused ion beam scanning electron microscope (FIB-SEM). Here, we utilize FIB-SEM-based time-of-flight secondary ion mass spectrometry (ToF-SIMS) to illustrate a novel approach to targeting <100 nm compositional and isotopic variations that can be used for targeting regions of interest for subsequent lift-out and APT analysis. We present a new method for high-spatial resolution targeting of small features that involves using FIB-SEM-based electron deposition of platinum “buttons” prior to standard lift-out and sharpening procedures for atom probe specimen manufacture. In combination, FIB-ToF-SIMS analysis and application of the “button” method ensure that even the smallest APT targets can be successfully captured in extracted needles.

34 citations


Journal ArticleDOI
01 Sep 2020
TL;DR: In this paper, the authors presented new U-Pb ID-TIMS dates and eHf values from baddeleyite and zircon grains from Karoo basin mafic sills and from felsic samples from the Lebombo and Mwenezi monoclines, together with an 40Ar/39Ar age database of Karoo rocks that has been filtered for true plateau ages with >70% of 39Ar released and in which all 40 ar/39 ar ages were recalculated using the current best estimates for the decay constants.
Abstract: To better constrain the age and duration of the magmatism associated with the Karoo large igneous province (LIP), we present new U-Pb ID-TIMS dates and eHf values from baddeleyite and zircon grains from Karoo basin mafic sills and from felsic samples from the Lebombo and Mwenezi monoclines, together with an 40Ar/39Ar age database of Karoo rocks that has been filtered for true plateau ages with >70% of 39Ar released and in which all 40Ar/39Ar ages were recalculated using the current best estimates for the decay constants. Zircon and baddeleyite ages from three Karoo basin sills range from 183.36 ± 0.17/0.27 to 183.06 ± 0.07/0.21 Ma, where the two uncertainties reflect the analytical error and the additional error associated with decay constant uncertainty. Zircon from the Mutandawhe pluton are dated to 176.84 ± 0.06/0.20 Ma, which represents the first high-precision U-Pb age of the late stage Karoo-LIP magmatism in the northern Lebombo-Mwenezi region. Initial hafnium isotopes are close to chondritic for the Karoo basin and central Lebombo samples (eHf from −2 to +3), but more negative for zircon grains from the Mutandawhe pluton (−11.3 ± 1.1, 2SD). In combination with previous studies and in agreement with the updated 40Ar/39Ar ages, we show that the sill complex that intruded the Karoo basin was short-lived at ~320 ± 180 ka and that it pre-dated the magmatism of the Ferrar-LIP by around 460 ka, whereas the entire Karoo-LIP was emplaced over a period of ca. 6.5 Ma. Based on high-precision U-Pb geochronology, Karoo-LIP magmatism occurred after 183.36 ± 0.17 Ma and therefore postdated the extinction pulses of the late Pliensbachian and likely the Pliensbachian-Toarcian boundary. However, we support previous conclusions that the start of the Karoo-LIP activity agrees with the onset of the Toarcian oceanic anoxic event and the early Toarcian warming, indicating that these environmental changes were likely a response to the magmatic activity of the Karoo-LIP.

31 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of trench migration, oblique tectonics, and syn-collisional orogen-parallel extension in the build-up of the Central Asian Orogenic system.
Abstract: The Central Asian Orogenic Belt, as the largest accretionary orogen on Earth, is an ideal candidate to study the geodynamics of convergent plate boundaries through a prolonged period. The evolution of this orogen has been explained by different tectonic models, which incorporated one, or a combination, of the following mechanisms: lateral stacking of arc systems along major shear zones, arc amalgamation, oroclinal bending, and trench migration. Here we elucidate major mechanisms responsible for the tectonic evolution of the Central Asian Orogenic Belt, focusing on the Chinese Tianshan Orogen in the southern Central Asian Orogenic Belt. Structural observations from the ∼50-km-long Gangou section show evidence of polyphase deformation. The earliest episode of orogen-parallel sinistral shearing, constrained to the Early Devonian (ca. 399 Ma) by syn-deformational intrusions, was possibly controlled by oblique subduction. This was followed by an episode of ∼NE−SW contractional deformation, dated at ca. 356 Ma (40Ar/39Ar age of syn-deformational hornblende), and likely associated with an episode of trench advance. The third stages of deformation during the latest Carboniferous and Permian involved ∼NE-SW contraction, orogen-parallel extension, and dextral transpression. Our new geochronological data constrain the timing of orogen-parallel extension to ca. 303−293 Ma, and confirm that dextral activation along shear zones occurred during the Permian. The results highlight the role of trench migration, oblique tectonics, and syn-collisional orogen-parallel extension in the build-up of the Central Asian Orogenic Belt, and contribute to the pre-collisional reconstruction of this orogenic system.

28 citations


Journal ArticleDOI
TL;DR: In this paper, a collision between the intra-oceanic island arc system of the East Junggar Terrane and the active margin of the Siberian Craton (Chinese Altai Orogen) is recorded in the eastern segment of the Irtysh Shear Zone (northwestern China).

22 citations


Journal ArticleDOI
TL;DR: The mid-Cretaceous GPRE was associated with a significant plate deceleration (minimum ∼26%), similar to the Eocene GPRE, implying that this process is fundamental to plate reconfigurations.

21 citations


Journal ArticleDOI
01 Apr 2020-Geology
TL;DR: In this article, the authors focused on two monogenetic volcanoes in the Newer Volcanic Province of southeastern Australia: Budj Bim and Tower Hill, respectively.
Abstract: In Australia, the onset of human occupation (≥65 ka?) and dispersion across the continent are the subjects of intense debate and are critical to understanding global human migration routes. New-generation multi-collector mass spectrometers capable of high-precision 40Ar/39Ar dating of young (<500 ka) samples provide unprecedented opportunities to improve temporal constraints of archaeological events. In southeastern Australia, a novel approach to improving understanding of occupation involves dating key volcanic eruptions in the region, referenced to stone artifacts and Aboriginal oral traditions. The current study focuses on two monogenetic volcanoes in the Newer Volcanic Province of southeastern Australia: Budj Bim (previously Mount Eccles) and Tower Hill. Budj Bim and its surrounding lava landforms are of great cultural significance and feature prominently in the oral traditions of the Gunditjmara people. Tower Hill is of archaeological significance due to the occurrence of a stone tool beneath tephra. 40Ar/39Ar eruption ages of 36.9 ± 3.1 ka (95% confidence interval) and 36.8 ± 3.8 ka (2σ) were determined for the Budj Bim and Tower Hill volcanic complexes, respectively. The Tower Hill eruption age is a minimum age constraint for human presence in Victoria, consistent with published optically stimulated luminescence and 14C age constraints for the earliest known occupation sites in Tasmania, New South Wales, and South Australia. If aspects of oral traditions pertaining to Budj Bim or its surrounding lava landforms reflect volcanic activity, this could be interpreted as evidence for these being some of the oldest oral traditions in existence.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the Miocene Cuonadong leucogranites in the easternmost section of the Tethyan Himalaya, Southern Tibet, are characterized by two types of tourmaline.
Abstract: Abstract The Miocene Cuonadong leucogranites in the easternmost section of the Tethyan Himalaya, Southern Tibet, are characterized by two types of tourmaline. Tourmaline occurs as needle-like crystals in the two-mica ± tourmaline granites (Tur G) and large patches in the pegmatites (Tur P). Both the granite and the pegmatites yield Miocene ages (ca. 20 Ma) based on monazite U(-Th)-Pb dating, whereas 40Ar/39Ar geochronology of the coarse-grained tourmalines (Tur P) crosscut by pegmatite veins yielded an Eocene mini-plateau age of 43 ± 6 Ma. Major element concentrations of tourmaline indicate that both Tur P and Tur G belong to the schorl group with a magmatic origin, but trace elements such as V indicate that they are not cogenetic. Boron isotopes suggest that Tur P (average –9.76‰) was derived from typical crustal sources, whereas Tur G (average –7.65‰) contains relatively more mafic input. The capture of Eocene tourmaline by the Miocene leucogranites at Cuonadong suggests that the crustally derived Eocene magmatism may have occurred in the southern Tethyan Himalaya. Identification of the inherited magmatic tourmaline (Tur P), although not common, challenges the current application of tourmaline chemistry to the investigation of magmatic-hydrothermal systems.

13 citations


Journal ArticleDOI
TL;DR: The 40Ar/39Ar system of unbrecciated eucrites should be in a relatively pristine state, and thus can inform us on the early volcanic and thermal history of the HED parent body, and, in particular, the cooling history of various crustal parts below the ∼300 °C isotherm, which represents the average closure temperature of the Ar diffusion in plagioclase.

11 citations



Journal ArticleDOI
TL;DR: In this paper, a partially preserved metamorphic core complex that developed during the ~1600-1580-Ma Hiltaba Event is interpreted to represent a partially-preserved core complex, making this one of the oldest known core complexes on Earth.

9 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive multi-disciplinary study to further constrain the processes involved in the evolution of the Nimbus Ag-Zn-(Au) deposit and generate a 4D evolutionary model of the system.

Journal ArticleDOI
01 Dec 2020-Lithos
TL;DR: In this article, the authors focused on a mafic dyke swarm that intruded in the region of Ajaccio (Corsica, France) and on a gabbroic intrusive complex outcropping in the Eastern Alps (Bressanone/Brixen, South Tyrol, Italy) both of which were emplaced during an extensional tectonic phase.

Journal ArticleDOI
TL;DR: In this article, the results of geodynamic models, geophysical interpretation, and isotopic analysis are used to understand the critical processes in the gold and nickel mineralization, which are presented by predictor maps.

Journal ArticleDOI
TL;DR: In this paper, 40Ar/39Ar ages and boron isotopes of tourmalines from a quartz-tourmaline intrusion crosscutting the Hadean detrital-zircon-bearing metasedimentary rocks from the Mt. Alfred and Brooking Hills localities of the Illaara Greenstone Belt, Western Australia were obtained.

Journal ArticleDOI
TL;DR: Based on crosscutting relationships of veins, textural relationships and mineral assemblages, five alteration/mineralization stages at Hongshanliang have been established: chlorite-sulfide stage (Stage I), quartz-pyrite stage, quartz-polymetallic sulfide stage, late veins (Stage IV), and supergene process (Stage V).

Journal ArticleDOI
22 Dec 2020
TL;DR: In this article, the authors present geochemical characteristics of the alkaline rocks of Rio Bonito intrusive complex, State of Rio de Janeiro, Brazil, which is constituted mainly by nepheline syenite.
Abstract: This article presents geochemical characteristics of the alkaline rocks of Rio Bonito intrusive complex, State of Rio de Janeiro, Brazil, which is constituted mainly by nepheline syenite. The fractional crystallisation of this magma decreases K2O/(Na2O + K2O) and increases (Na + K)/Al. The TiO2, Fe2O3*, MgO, CaO, and P2O5 contents indicate fractionation of titanite, ilmenite, and clinopyroxene or amphibole. The total rare earth elements (REEs) are high, and the REE pattern is linear with negative gradient. The nepheline syenite aplite has low REEs, concave REE pattern, and positive Eu anomaly. The ultrabasic and basic mela-nepheline syenite samples have total REEs and light REEs higher than the felsic alkaline rocks. Therefore, the nepheline syenite magma is not derived directly from the alkaline ultrabasic magma. Laser-spot step‑heating 40Ar/39Ar ages for biotite and amphibole are 65.03 ± 0.70 and 65.03 ± 0.46. U-Pb ages LA-ICP-MS for two samples are 65.49 ± 0.30 and 65.18 ± 0.30. Values of eHf are negative for both samples, indicating an important crustal component in the evolution of Rio Bonito.