scispace - formally typeset
Search or ask a question

Showing papers by "Gordon B. Bonan published in 2019"


Journal ArticleDOI
TL;DR: The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems.
Abstract: The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and time‐evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5.

661 citations


Journal ArticleDOI
TL;DR: Simulations of the Community Land Model show that no version of CLM captures changes in plant physiology, allocation, and nutrient uptake that are likely important aspects of terrestrial ecosystems' responses to environmental change, and highlight priority areas that should be addressed in future model developments.
Abstract: Land models are often used to simulate terrestrial responses to future environmental changes, but these models are not commonly evaluated with data from experimental manipulations. Results from experimental manipulations can identify and evaluate model assumptions that are consistent with appropriate ecosystem responses to future environmental change. We conducted simulations using three coupled carbon-nitrogen versions of the Community Land Model (CLM, versions 4, 4.5, and-the newly developed-5), and compared the simulated response to nitrogen (N) and atmospheric carbon dioxide (CO2) enrichment with meta-analyses of observations from similar experimental manipulations. In control simulations, successive versions of CLM showed a poleward increase in gross primary productivity and an overall bias reduction, compared to FLUXNET-MTE observations. Simulations with N and CO2 enrichment demonstrate that CLM transitioned from a model that exhibited strong nitrogen limitation of the terrestrial carbon cycle (CLM4) to a model that showed greater responsiveness to elevated concentrations of CO2 in the atmosphere (CLM5). Overall, CLM5 simulations showed better agreement with observed ecosystem responses to experimental N and CO2 enrichment than previous versions of the model. These simulations also exposed shortcomings in structural assumptions and parameterizations. Specifically, no version of CLM captures changes in plant physiology, allocation, and nutrient uptake that are likely important aspects of terrestrial ecosystems' responses to environmental change. These highlight priority areas that should be addressed in future model developments. Moving forward, incorporating results from experimental manipulations into model benchmarking tools that are used to evaluate model performance will help increase confidence in terrestrial carbon cycle projections.

65 citations



Book
01 Feb 2019
TL;DR: In this article, a companion book to Gordon Bonan's Ecological Climatology: Concepts and Applications, Third Edition, builds on the concepts introduced there, and provides the mathematical foundation upon which to develop and understand ecosystem models and their relevance for these Earth system models.
Abstract: Climate models have evolved into Earth system models with representation of the physics, chemistry, and biology of terrestrial ecosystems. This companion book to Gordon Bonan's Ecological Climatology: Concepts and Applications, Third Edition, builds on the concepts introduced there, and provides the mathematical foundation upon which to develop and understand ecosystem models and their relevance for these Earth system models. The book bridges the disciplinary gap among land surface models developed by atmospheric scientists; biogeochemical models, dynamic global vegetation models, and ecosystem demography models developed by ecologists; and ecohydrology models developed by hydrologists. Review questions, supplemental code, and modeling projects are provided, to aid with understanding how the equations are used. The book is an invaluable guide to climate change and terrestrial ecosystem modeling for graduate students and researchers in climate change, climatology, ecology, hydrology, biogeochemistry, meteorology, environmental science, mathematical modeling, and environmental biophysics.

52 citations


Journal ArticleDOI
TL;DR: In this paper, surface properties control the partitioning of energy within the surface energy, and changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales.
Abstract: Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energ...

51 citations



Journal ArticleDOI
TL;DR: In this article, the authors used two eddy covariance tower clusters in the Eastern USA to evaluate surface energy fluxes (latent heat, λE; sensible heat, H; net radiation, Rn; and ground heat, G) and surface properties (aerodynamic resistance to heat transfer, raero; Bowen ratio, β; and albedo, α).
Abstract: Recent advances in variable-resolution (VR) global models provide the tools necessary to investigate local and global impacts of land cover by embedding a high-resolution grid over areas of interest in a seamless and computationally efficient manner. We used two eddy covariance tower clusters in the Eastern USA to evaluate surface energy fluxes (latent heat, λE; sensible heat, H; net radiation, Rn; and ground heat, G) and surface properties (aerodynamic resistance to heat transfer, raero; Bowen ratio, β; and albedo, α) by uncoupled point simulations of the land-only Community Land Model (PTCLM4.5) and two coupled land–atmosphere Community Earth System Model (CESM1.3) simulations. The CESM simulations included a 1° uniform grid global simulation and global 1° simulation with a 0.25° refined VR grid over the Eastern USA. Tower clusters included the following plant functional types—broadleaf deciduous temperate (hardwood) forest, C3 non-Arctic grass (grass), a cropland, and needleleaf evergreen temperate (pine) forest. During the growing season, diurnal cycles of λE and H for grass and the cropland were simulated well by PTCLM4.5 and VR-CESM1.3; however, λE (H) was biased low (high) at the hardwood and pine forested sites, contributing to biases in β. Growing season Rn was generally well simulated by CLM4.5 and VR-CESM1.3; however, modeled elevated albedo (indicative of snow cover) persisted longer in winter and spring leading to large biases in Rn and α. The introduction of a VR grid does not adversely impact surface energy fluxes compared to 1° uniform grids and highlights the usefulness of this approach for future efforts to predict land–atmosphere fluxes across heterogeneous landscapes.

14 citations


Book ChapterDOI
01 Feb 2019

11 citations


Book ChapterDOI
01 Feb 2019

4 citations


Book ChapterDOI
01 Feb 2019

4 citations




Book ChapterDOI
01 Feb 2019