scispace - formally typeset
G

Gregory J. Hannon

Researcher at University of Cambridge

Publications -  435
Citations -  149270

Gregory J. Hannon is an academic researcher from University of Cambridge. The author has contributed to research in topics: RNA interference & Argonaute. The author has an hindex of 165, co-authored 421 publications receiving 140456 citations. Previous affiliations of Gregory J. Hannon include Case Western Reserve University & Federal University of Rio de Janeiro.

Papers
More filters
Journal ArticleDOI

MicroRNAs: small RNAs with a big role in gene regulation

TL;DR: Two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events and indicate the existence of multiple RISCs that carry out related but specific biological functions.
Journal ArticleDOI

Role for a bidentate ribonuclease in the initiation step of RNA interference

TL;DR: Dicer is a member of the RNase III family of nucleases that specifically cleave double-stranded RNAs, and is evolutionarily conserved in worms, flies, plants, fungi and mammals, and has a distinctive structure, which includes a helicase domain and dualRNase III motifs.
Journal ArticleDOI

Landscape of transcription in human cells

Sarah Djebali, +87 more
- 06 Sep 2012 - 
TL;DR: Evidence that three-quarters of the human genome is capable of being transcribed is reported, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs that prompt a redefinition of the concept of a gene.
Journal ArticleDOI

A microRNA polycistron as a potential human oncogene

TL;DR: It is found that the levels of the primary or mature microRNAs derived from the mir-17–92 locus are often substantially increased in human B-cell lymphomas, and the cluster is implicate as a potential human oncogene.
Journal ArticleDOI

A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4

TL;DR: P16 seems to act in a regulatory feedback circuit with CDK4, D-type cyclins and retinoblastoma protein, and inhibits the catalytic activity of theCDK4/cyclin D enzymes.