scispace - formally typeset
Search or ask a question

Showing papers by "Imke Schmitt published in 2019"


Journal ArticleDOI
TL;DR: The diversity of the genes affecting the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes rather than through introduction of a few key innovations.
Abstract: Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts), mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata. We focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted protein families, and proteins with differential rates of evolution. A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter, and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G-protein α subunit paralogs. Expanded algal protein families include carbohydrate active enzymes and a specific subclass of cytoplasmic carbonic anhydrases. The alga also appears to have acquired by horizontal gene transfer from prokaryotes novel archaeal ATPases and Desiccation-Related Proteins. Expanded in both symbionts are signal transduction components, ankyrin domain proteins and transcription factors involved in chromatin remodeling and stress responses. The fungal transportome is contracted, as are algal nitrate assimilation genes. C) In the mycobiont, slow-evolving proteins were enriched for components involved in protein translation, translocation and sorting. The surveyed genes affect stress resistance, signaling, genome reprogramming, nutritional and structural interactions. The alga carries many genes likely transferred horizontally through viruses, yet we found no evidence of inter-symbiont gene transfer. The presence in the photobiont of meiosis-specific genes supports the notion that sexual reproduction occurs in Asterochloris while they are free-living, a phenomenon with implications for the adaptability of lichens and the persistent autonomy of the symbionts. The diversity of the genes affecting the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes rather than through introduction of a few key innovations. This predicts that paths to lichenization were variable in different phyla, which is consistent with the emerging consensus that ascolichens could have had a few independent origins.

81 citations


Journal ArticleDOI
TL;DR: This study uses genome mining and comparative genomics to assess biosynthetic gene clusters and their putative regulators in the genomes of two lichen-forming fungi, which have substantial commercial value in the perfume industry, Evernia prunastri and Pseudevernia furfuracea.
Abstract: Lichen-forming fungi produce a vast number of unique natural products with a wide variety of biological activities and human uses. Although lichens have remarkable potential in natural product research and industry, the molecular mechanisms underlying the biosynthesis of lichen metabolites are poorly understood. Here we use genome mining and comparative genomics to assess biosynthetic gene clusters and their putative regulators in the genomes of two lichen-forming fungi, which have substantial commercial value in the perfume industry, Evernia prunastri and Pseudevernia furfuracea. We report a total of 80 biosynthetic gene clusters (polyketide synthases (PKS), non-ribosomal peptide synthetases and terpene synthases) in E. prunastri and 51 in P. furfuracea. We present an in-depth comparison of 11 clusters, which show high homology between the two species. A ketosynthase (KS) phylogeny shows that biosynthetic gene clusters from E. prunastri and P. furfuracea are widespread across the Fungi. The phylogeny includes 15 genomes of lichenized fungi and all fungal PKSs with known functions from the MIBiG database. Phylogenetically closely related KS domains predict not only similar PKS architecture but also similar cluster architecture. Our study highlights the untapped biosynthetic richness of lichen-forming fungi, provides new insights into lichen biosynthetic pathways and facilitates heterologous expression of lichen biosynthetic gene clusters.

33 citations


Journal ArticleDOI
TL;DR: It is argued that the complete lack of genetic homothallism suggesting that lichens evolved from a heterothallic ancestor may be related to the symbiotic lifestyle of these fungi, and may be a key innovation that has contributed to the accelerated diversification rates in this fungal group.
Abstract: Fungal reproduction is regulated by the mating-type (MAT1) locus, which typically comprises two idiomorphic genes. The presence of one or both allelic variants at the locus determines the reproductive strategy in fungi-homothallism versus heterothallism. It has been hypothesized that self-fertility via homothallism is widespread in lichen-forming fungi. To test this hypothesis, we characterized the MAT1 locus of 41 genomes of lichen-forming fungi representing a wide range of growth forms and reproductive strategies in the class Lecanoromycetes, the largest group of lichen-forming fungi. Our results show the complete lack of genetic homothallism suggesting that lichens evolved from a heterothallic ancestor. We argue that this may be related to the symbiotic lifestyle of these fungi, and may be a key innovation that has contributed to the accelerated diversification rates in this fungal group.

19 citations


Journal ArticleDOI
09 Sep 2019
TL;DR: Assessment of genetic diversity and interaction patterns of algal and fungal partners in lichen communities along an anthropogenic disturbance gradient in Białowieża Forest (Poland) finds that lichens that associate with this symbiont are not limited by the availability of compatible photobionts in Central European forests, regardless of land use intensity.
Abstract: Anthropogenic disturbances can have strong impacts on lichen communities, as well as on individual species of lichenized fungi. Traditionally, lichen monitoring studies are based on the presence and abundance of fungal morphospecies. However, the photobionts, as well photobiont mycobiont interactions also contribute to the structure, composition, and resilience of lichen communities. Here we assess the genetic diversity and interaction patterns of algal and fungal partners in lichen communities along an anthropogenic disturbance gradient in Bialowieza Forest (Poland). We sampled a total of 224 lichen thalli in a protected, a managed, and a disturbed area of the forest, and sequenced internal transcribed spacer (ITS) ribosomal DNA (rDNA) of both, fungal and algal partners. Sequence clustering using a 97% similarity threshold resulted in 46 fungal and 23 green algal operational taxonomic units (OTUs). Most of the recovered photobiont OTUs (14 out of 23) had no similar hit in the NCBI-BLAST search, suggesting that even in well studied regions, such as central Europe, a lot of photobiont diversity is yet undiscovered. If a mycobiont was present at more than one site, it was typically associated with the same photobiont OTU(s). Generalist species, i.e., taxa that associate with multiple symbiont partners, occurred in all three disturbance regimes, suggesting that such taxa have few limitations in colonizing or persisting in disturbed areas. Trebouxia jamesii associated with 53% of the fungal OTUs, and was generally the most common photobiont OTU in all areas, implying that lichens that associate with this symbiont are not limited by the availability of compatible photobionts in Central European forests, regardless of land use intensity.

11 citations


Posted ContentDOI
21 Oct 2019-bioRxiv
TL;DR: The first assembly of a lichen holo-genome from metagenomic whole genome shotgun data comprising both PacBio long reads and Illumina short reads is presented and it is shown that G/C-rich inverted repeats paired with non-random sequencing error in PacBio data can result in missing gene predictions.
Abstract: Lichens are valuable models in symbiosis research and promising sources of biosynthetic genes for biotechnological applications. Most lichenized fungi grow slowly, resist aposymbiotic cultivation, and are generally poor candidates for experimentation. Obtaining contiguous, high quality genomes for such symbiotic communities is technically challenging. Here we present the first assembly of a lichen holo-genome from metagenomic whole genome shotgun data comprising both PacBio long reads and Illumina short reads. The nuclear genomes of the two primary components of the lichen symbiosis - the fungus Umbilicaria pustulata (33 Mbp) and the green alga Trebouxia sp. (53 Mbp) - were assembled at contiguities comparable to single-species assemblies. The analysis of the read coverage pattern revealed a relative cellular abundance of approximately 20:1 (fungus:alga). Gap-free, circular sequences for all organellar genomes were obtained. The community of lichen-associated bacteria is dominated by Acidobacteriaceae, and the two largest bacterial contigs belong to the genus Acidobacterium. Gene set analyses showed no evidence of horizontal gene transfer from algae or bacteria into the fungal genome. Our data suggest a lineage-specific loss of a putative gibberellin-20-oxidase in the fungus, a gene fusion in the fungal mitochondrion, and a relocation of an algal chloroplast gene to the algal nucleus. Major technical obstacles during reconstruction of the holo-genome were coverage differences among individual genomes surpassing three orders of magnitude. Moreover, we show that G/C-rich inverted repeats paired with non-random sequencing error in PacBio data can result in missing gene predictions. This likely poses a general problem for genome assemblies based on long reads.

4 citations