scispace - formally typeset
Search or ask a question

Showing papers by "Jean-Pierre Gorvel published in 2015"


Journal ArticleDOI
TL;DR: The model of SKIP knockout mice is used to show that this protein mediates the host susceptibility to salmonellosis and to establish that SifA also contributes to Salmonella virulence independently of its interaction with SKIP, and that the C-terminal domain of S ifA mediates this SKIP-independent contribution.
Abstract: The virulence of Salmonella relies on the expression of effector proteins that the bacterium injects inside infected cells. Salmonella enters eukaryotic cells and resides in a vacuolar compartment on which a number of effector proteins such as SifA are found. SifA plays an essential role in Salmonella virulence. It is made of two distinct domains. The N-terminal domain of SifA interacts with the host protein SKIP. This interaction regulates vacuolar membrane dynamics. The C-terminal has a fold similar to other bacterial effector domains having a guanine nucleotide exchange factor activity. Although SifA interacts with RhoA, it does not stimulate the dissociation of GDP and the activation of this GTPase. Hence it remains unknown whether the C-terminal domain contributes to the function of SifA in virulence. We used a model of SKIP knockout mice to show that this protein mediates the host susceptibility to salmonellosis and to establish that SifA also contributes to Salmonella virulence independently of its interaction with SKIP. We establish that the C-terminal domain of SifA mediates this SKIP-independent contribution. Moreover, we show that the two domains of SifA are functionally linked and participate to the same signalling cascade that supports Salmonella virulence.

111 citations



Journal ArticleDOI
TL;DR: Interleukin-4 boosts the capacity of dendritic cells to present endogenous antigens on MHC II and to resist bacterial infection through a mechanism shown to be partially dependent on RUFY4 expression.
Abstract: Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain–containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17–positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4–treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.

48 citations


Journal ArticleDOI
TL;DR: The first example of anti-virulence-triggered immunity counteracted by a pore-forming toxin during bacteremia is reported, revealing the central role of the IL-1β signaling axis and Gr1+ cells in controlling the Escherichia coli burden in the blood in response to the sensing of the Rho GTPase-activating toxin CNF1.
Abstract: The detection of the activities of pathogen-encoded virulence factors by the innate immune system has emerged as a new paradigm of pathogen recognition. Much remains to be determined with regard to the molecular and cellular components contributing to this defense mechanism in mammals and importance during infection. Here, we reveal the central role of the IL-1β signaling axis and Gr1+ cells in controlling the Escherichia coli burden in the blood in response to the sensing of the Rho GTPase-activating toxin CNF1. Consistently, this innate immune response is abrogated in caspase-1/11-impaired mice or following the treatment of infected mice with an IL-1β antagonist. In vitro experiments further revealed the synergistic effects of CNF1 and LPS in promoting the maturation/secretion of IL-1β and establishing the roles of Rac, ASC and caspase-1 in this pathway. Furthermore, we found that the α-hemolysin toxin inhibits IL-1β secretion without affecting the recruitment of Gr1+ cells. Here, we report the first example of anti-virulence-triggered immunity counteracted by a pore-forming toxin during bacteremia.

48 citations


Journal ArticleDOI
TL;DR: A mechanism for neutropenia in chronic brucellosis is suggested and a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN is revealed.
Abstract: Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN.

42 citations


Journal ArticleDOI
28 Apr 2015-PLOS ONE
TL;DR: The results highlight the role of CLN in oral infections as both, an initial and efficient trap for bacterial invaders and as possible reservoir for chronic pathogens and cast a new light on the significance of oral routes for means of vaccination.
Abstract: Cervical lymph nodes (CLN) are the first lymph nodes encountered by material taking the oral route. To study their role in orally acquired infections, we analyzed 307 patients of up to 14 years treated in the university clinic of Skopje, Macedonia, for brucellosis, a zoonotic bacterial disease frequently acquired by ingestion of contaminated dairy products. From these children, 36% had lymphadenopathy. Among orally infected children, lymphadenopathy with CLN being the only lymph nodes affected was significantly more frequent as compared to those infected by contact with animals (83% vs. 63%), suggesting a possible involvement of CLN during orally acquired human brucellosis. Using a murine model where bacteria are delivered into the oral cavity, we show that Brucella quickly and selectively colonize the CLN where they proliferate and persist over long periods of time for up to 50 days post-infection. A similar efficient though less specific drainage to CLN was found for Brucella, Salmonella typhimurium and fluorescent microspheres delivered by gavage, a pathway likely representing a mixed infection mode of intragastric and oral infection, suggesting a central pathway of drained material. Microspheres as well as bacteria drained to CLN predominately reside in cells expressing CD68 and no or low levels of CD11c. Even though no systemic response could be detected, Brucella induced a locally restricted inflammatory reaction with increased expression levels of interferon γ, interleukin (IL)-6, IL-12, granzyme B and a delayed induction of Nos2. Inflammation led to pronounced lymphadenopathy, infiltration of macrophages/monocytes expressing high levels of major histocompatibility complex II and to formation of epitheloid granulomas. Together, these results highlight the role of CLN in oral infections as both, an initial and efficient trap for bacterial invaders and as possible reservoir for chronic pathogens. They likewise cast a new light on the significance of oral routes for means of vaccination.

31 citations


Journal ArticleDOI
TL;DR: A genome-wide approach was used to characterize human myeloid dendritic cell responses to CβG and characterized the inflammatory infiltrates at the level of mouse ear when injected with C βG or LPS.
Abstract: Brucella is the causing agent of a chronic zoonosis called brucellosis. The Brucella β-1,2 cyclic glucan (CβG) is a virulence factor, which has been described as a potent immune stimulator, albeit with no toxicity for cells and animals. We first used a genome-wide approach to characterize human myeloid dendritic cell (mDC) responses to CβG. Transcripts related to inflammation (IL-6, IL2RA, PTGS2), chemokine (CXCR7, CXCL2) and anti-inflammatory pathways (TNFAIP6, SOCS3) were highly expressed in CβG-treated mDC. In mouse GMCSF-derived DC, CβG triggered the expression of both activation (CXCL2, KC) and inhibition (SOCS3 and TNFAIP6) molecules. We then characterized the inflammatory infiltrates at the level of mouse ear when injected with CβG or LPS. CβG yielded a lower and transient recruitment of neutrophils compared to LPS. The consequence of these dual pro- and anti-inflammatory signals triggered by CβG corresponds to the induction of a controlled local inflammation.

14 citations


Journal ArticleDOI
TL;DR: Details of the gating strategy used to isolate each phagocyte subset of PP are provided and quality controls and analysis associated with the gene array data deposited into Gene Expression Omnibus (GEO) under GSE65514 are shown.
Abstract: Peyer's patches (PPs) are primary inductive sites of mucosal immunity. The PP mononuclear phagocyte system, which encompasses both dendritic cells (DCs) and macrophages, is essential for the initiation of the mucosal immune response. We recently developed a method to isolate each mononuclear phagocyte subset of PP (Bonnardel et al., 2015). We performed a transcriptional analysis of three of these subsets: the CD11b(+) conventional DC, the lysozyme-expressing monocyte-derived DC termed LysoDC and the CD11c(hi) lysozyme-expressing macrophages. Here, we provide details of the gating strategy we used to isolate each phagocyte subset and show the quality controls and analysis associated with our gene array data deposited into Gene Expression Omnibus (GEO) under GSE65514.

13 citations


Journal ArticleDOI
TL;DR: Recent insights into DC-pathogenic bacteria cross-talk using the mouse model of infection with an emphasis on DC subtypes are brought in.

2 citations


Journal Article
TL;DR: It is reported that poly(I:C) can significantly enhance both CD8 + and CD4 + T cell responses elicited by targeting antigen to CD40 in both human in vitro and in human CD40 transgenic mouse in vivo settings.
Abstract: Dendritic cells are major antigen-presenting cells that can efficiently cross-prime antigen-specific CD8 + T cells. Thus, targeting antigen to dendritic cells via surface receptors is an appealing strategy to mount CD8 + T cell-mediated immunity against intracellular pathogens and cancers. Nonetheless, which targeted receptor is the most efficient at priming CD8 + T cells remains elusive. Herein, we report the superior function of CD40 over nine different lectins and scavenger receptors at priming antigen-specific CD8 + T cells. A quantitative analysis of intracellular trafficking of antibody-bound receptors revealed that αCD40 monoclonal antibody localized mainly at the plasma membrane and subsequently accumulated at early endocytic compartments whereas αLOX-1 and αDectin-1 monoclonal antibodies localized at both early and late endocytic compartments in dendritic cells. Regardless of the differences in their subcellular localizations, targeting antigen to CD40 and lectins resulted in the same pattern of peptide epitope-specific IFNg + CD8 + T cell responses. We also report that poly(I:C) can significantly enhance both CD8 + and CD4 + T cell responses elicited by targeting antigen to CD40 in both human in vitro and in human CD40 transgenic mouse in vivo settings. This study provides key information for the rational design of DC-targeting vaccines against cancers and intracellular pathogens.

1 citations