scispace - formally typeset
Search or ask a question

Showing papers by "Klaus Dolag published in 2010"


Journal ArticleDOI
TL;DR: In this article, the authors derived the magnetic field strength and power spectrum of the Coma cluster magnetic field from the Faraday rotation measure (RM) images with numerical simulations of magnetic field.
Abstract: Aims. The aim of the present work is to constrain the Coma cluster magnetic field strength, its radial profile and power spectrum by comparing Faraday rotation measure (RM) images with numerical simulations of the magnetic field. Methods. We have analyzed polarization data for seven radio sources in the Coma cluster field observed with the Very Large Array at 3.6, 6 and 20 cm, and derived Faraday rotation measures with kiloparsec scale resolution. Random three dimensional magnetic field models have been simulated for various values of the central intensity B0 and radial power-law slope η ,w hereη indicates how the field scales with respect to the gas density profile. Results. We derive the central magnetic field strength, and radial profile values that best reproduce the RM observations. We find that the magnetic field power spectrum is well represented by a Kolmogorov power spectrum with minimum scale ∼2 kpc and maximum scale ∼34 kpc. The central magnetic field strength and radial slope are constrained to be in the range (B0 = 3.9 μG; η = 0.4) and (B0 = 5.4 μG; η = 0.7) within 1σ. The best agreement between observations and simulations is achieved for B0 = 4.7 μG; η = 0.5. Values of B0 > 7 μ Ga nd 1.0 are incompatible with RM data at 99% confidence level.

404 citations



Journal ArticleDOI
J. A. Tauber1, Nazzareno Mandolesi2, J.-L. Puget3, T. Banos4  +499 moreInstitutions (61)
TL;DR: The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research as mentioned in this paper.
Abstract: The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity ( ~ 2 × 10-6) and angular resolution (~5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30-350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis.

342 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigate potential biases in lensing and X-ray methods to measure the cluster mass profiles and find that strong lensing models can be trusted over a limited region around the cluster core.
Abstract: Context. Measuring the mass of galaxy clusters is a key issue in cosmology. Among the methods employed to achieve this goal, the techniques based on lensing and X-ray analyses are perhaps the most widely used. However, the comparison between these mass estimates is often di cult and, in several clusters, the results apparently are inconsistent. Aims. We aim at investigating potential biases in lensing and X-ray methods to measure the cluster mass profiles. Methods. We do so by performing realistic simulations of lensing and X-ray observations that are subsequently analyzed using observational techniques. The resulting mass estimates are compared among them and with the input models. Three clusters obtained from state-of-the-art hydrodynamical simulations, each of which has been projected along three independent lines-of-sight, are used for this analysis. Results. We find that strong lensing models can be trusted over a limited region around the cluster core. Extrapolating the strong lensing mass models to outside the Einstein ring can lead to significant biases in the mass estimates , if the BCG is not modeled properly for example. Weak lensing mass measurements can be largely a ected by substructures, depending on the method implemented to convert the shear into a mass estimate. Using non-parametric methods which combine weak and strong lensing data, the projected masses within R200 can be constrained with a precision of 10%. De-projection of lensing masses increases the scatter around the true masses by more than a factor of two due to cluster triaxiality. X-ray mass measurements have much smaller scatter (about a factor of two smaller than the lensing masses) but they are generally biased low by 5 20%. This bias is entirely ascribable to bulk motions in the gas of our simulated clusters. Using the lensing and the X-ray masses as proxies for the true and the hydrostatic equilibrium masses of the simulated clusters and by averaging over the cluster sample we are able to measure the lack of hydrostatic equilibrium in the systems we have investigated. Conclusions. Although the comparison between lensing and X-ray masses may be di cult in individual systems due to triaxiality and substructures, using a large number of clusters with both lensing and X-ray observations may lead to important information about their gas physics and allow to use lensing masses to calibrate the X-ray scaling relations.

322 citations


Journal ArticleDOI
TL;DR: In this article, the effect of active galactic nuclei (AGN) feedback on metal enrichment and thermal properties of the ICM in hydrodynamical simulations of galaxy clusters is investigated.
Abstract: We present a study of the effect of active galactic nuclei (AGN) feedback on metal enrichment and thermal properties of the intracluster medium (ICM) in hydrodynamical simulations of galaxy clusters. The simulations are performed using a version of the TREEPM-SPH GADGET-2 code, which also follows chemodynamical evolution by accounting for metal enrichment contributed by different stellar populations. We carry out cosmological simulations for a set of galaxy clusters, covering the mass range M 200 ≃ (0.1-2.2) x 10 15 h -1 M ☉ . Besides runs not including any efficient form of energy feedback, we carry out simulations including three different feedback schemes: (i) kinetic feedback in the form of galactic winds triggered by supernova explosions; (ii) AGN feedback from gas accretion on to supermassive black holes (BHs) and (iii) AGN feedback in which a 'radio mode' is included with an efficient thermal coupling of the extracted energy, whenever BHs enter in a quiescent accretion phase. Besides investigating the resulting thermal properties of the ICM, we analyse in detail the effect that these feedback models have on the ICM metal enrichment. We find that AGN feedback has the desired effect of quenching star formation in the brightest cluster galaxies at z < 4 and provides correct temperature profiles in the central regions of galaxy groups. However, its effect is not yet sufficient to create 'cool cores' in massive clusters while generating an excess of entropy in central regions of galaxy groups. As for the pattern of metal distribution, AGN feedback creates a widespread enrichment in the outskirts of clusters, thanks to its efficiency in displacing enriched gas from galactic haloes to the intergalactic medium. This turns into profiles of iron abundance, Z Fe , which are in better agreement with observational results, and into a more pristine enrichment of the ICM around and beyond the cluster virial regions. Following the pattern of the relative abundances of silicon and iron, we conclude that a significant fraction of the ICM enrichment is contributed in simulations by a diffuse population of intracluster stars. Our simulations also predict that profiles of the Z Si /Z Fe abundance ratio do not increase at increasing radii, at least out to 0.5R vir . Our results clearly show that different sources of energy feedback leave distinct imprints in the enrichment pattern of the ICM. They further demonstrate that such imprints are more evident when looking at external regions, approaching the cluster virial boundaries.

238 citations


Journal ArticleDOI
TL;DR: In this article, the role of a wide variety of parameters (critical metallicity for the transition, IMF slope and range, SN/pair-instability SN metal yields, star formation threshold, resolution, etc.) on the metal-enrichment history and the associated transition in the star formation mode was investigated.
Abstract: We present results from the first cosmological simulations which study the onset of primordial, metal-free (population III), cosmic star formation and the transition to the present-day, metalrich star formation (population II-I), including molecular (H2, HD, etc.) evolution, tracing the injection of metals by supernovae (SNe) into the surrounding intergalactic medium and following the change in the initial mass function (IMF) according to the metallicity of the corresponding stellar population. Our investigation addresses the role of a wide variety of parameters (critical metallicity for the transition, IMF slope and range, SN/pair-instability SN metal yields, star formation threshold, resolution, etc.) on the metal-enrichment history and the associated transition in the star formation mode. All simulations present common trends. Metal enrichment is very patchy, with rare, unpolluted regions surviving at all redshifts, inducing the simultaneous presence of metal-free and metal-rich star formation regimes. As a result of the rapid pollution within high-density regions due to the first SN/pair-instability SN, local metallicity is quickly boosted above the critical metallicity for the transition. For this reason, population III stars dominate only during the very first stages of structure formation, with an average contribution to the total star formation rate that reaches a constant value of ∼10 −3 at redshift ∼11–13. If primordial supenovae consisted only of type II ones, the contribution would be ∼10 −1 . Interestingly, the above conclusions are independent from many poorly constrained

196 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used a set of high-resolution hydrodynamical simulations of clusters of galaxies to study the build-up of the intracluster light (ICL), an interesting and likely significant component of their total stellar mass.
Abstract: We use a set of high-resolution hydrodynamical simulations of clusters of galaxies to study the build-up of the intracluster light (ICL), an interesting and likely significant component of their total stellar mass. Our sample of groups and clusters includes active galactic nucleus (AGN) feedback and is of high enough resolution to accurately resolve galaxy populations down to the smallest galaxies that are expected to significantly contribute to the stellar mass budget. We describe and test four different methods to identify the ICL in cluster simulations, thereby allowing us to assess the reliability of the measurements. For all of the methods, we consistently find a very significant ICL stellar fraction (∼45 per cent) which exceeds the values typically inferred from observations. However, we show that this result is robust with respect to numerical resolution and integration accuracy, remarkably insensitive to changes in the star formation model, and almost independent of halo mass. It is also almost invariant when black hole growth is included, even though AGN feedback successfully prevents excessive overcooling in clusters and leads to a drastically improved agreement of the simulated cluster galaxy population with observations. In particular, the luminosities of central cluster galaxies and the ages of their stellar populations are much more realistic when including AGN. In the light of these findings, it appears challenging to construct a simulation model that simultaneously matches the cluster galaxy population and at the same time produces a low ICL component. We find that intracluster stars are preferentially stripped in a cluster's densest region from massive galaxies that fall into the forming cluster at z > 1. Surprisingly, some of the intracluster stars also form in the intracluster medium inside cold gas clouds that are stripped out of infalling galaxies.

178 citations


Journal ArticleDOI
TL;DR: In this paper, the substructure statistics of a representative sample of galaxy clusters by means of two currently popular substructure characterisation methods, power ratios and centroid shifts, were studied.
Abstract: We study the substructure statistics of a representative sample of galaxy clusters by means of two currently popular substructure characterisation methods, power ratios and centroid shifts. We use the 31 clusters from the REXCESS sample, compiled from the southern ROSAT All-Sky cluster survey (REFLEX) with a morphologically unbiased selection in X-ray luminosity and redshift, all of which have been reobserved with XMM-Newton. The main goals of this work are to study the relationship between cluster morphology and other bulk properties, and the comparison of the morphology statistics between observations and numerical simulations. We investigate the uncertainties of the substructure parameters via newly-developed Monte Carlo methods, and examine the dependence of the results on projection effects (via the viewing angle of simulated clusters), finding that the uncertainties of the parameters can be quite substantial. Thus while the quantification of the dynamical state of individual clusters with these parameters should be treated with extreme caution, these substructure measures provide powerful statistical tools to characterise trends of properties in large cluster samples. The centre shift parameter, w, is found to be more sensitive in general and offers a larger dynamic range than the power ratios. For the REXCESS sample neither the occurence of substructure nor the presence of cool cores depends on cluster mass; however a weak correlation with X-ray luminosity is present, which is interpreted as selection effect. There is a significant anti-correlation between the existence of substantial substructure and cool cores. The simulated clusters show on average larger substructure parameters than the observed clusters, a trend that is traced to the fact that cool regions are more pronounced in the simulated clusters, leading to stronger substructure measures in merging clusters and clusters with offset cores. Moreover, the frequency of cool regions is higher in the simulations than in the observations, implying that the description of the physical processes shaping cluster formation in the simulations requires further improvement.

142 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the velocity distribution of the remaining stars and detected two dynamically, well-distinct stellar components within simulated galaxy clusters and applied an unbinding procedure which leads to a spatial separation of the two components into a cD and a diffuse stellar component (DSC).
Abstract: Member galaxies within galaxy clusters nowadays can be routinely identified in cosmological, hydrodynamical simulations using methods based on identifying self bound, locally over dense substructures. However, distinguishing the central galaxy from the stellar diffuse component within clusters is notoriously difficult, and in the centre it is not even clear if two distinct stellar populations exist. Here, after subtracting all member galaxies, we use the velocity distribution of the remaining stars and detect two dynamically, well-distinct stellar components within simulated galaxy clusters. These differences in the dynamics can be used to apply an unbinding procedure which leads to a spatial separation of the two components into a cD and a diffuse stellar component (DSC). Applying our new algorithm to a cosmological, hydrodynamical simulation we find that – in line with previous studies – these two components have clearly distinguished spatial and velocity distributions as well as different star formation histories. We show that the DSC fraction – which can broadly be associated with the observed intracluster light – does not depend on the virial mass of the galaxy cluster and is much more sensitive to the formation history of the cluster. We conclude that the separation of the cD and the DSC in simulations, based on our dynamical criteria, is more physically motivated than current methods which depend on implicit assumptions on a length-scale associated with the cD galaxy and therefore represent a step forward in understanding the different stellar components within galaxy clusters. Our results also show the importance of analysing the dynamics of the DSC to characterize its properties and understand its origin.

97 citations


Journal ArticleDOI
Abstract: Aims. The goal of this work is to investigate the Faraday rotation measure (RM) of radio galaxies in hot galaxy clusters in order to establish a possible connection between the magnetic field strength and the gas temperature of the intracluster medium. Methods. We performed Very Large Array observations at 3.6 cm and 6 cm of two radio galaxies located in A401 and Ophiuchus, a radio galaxy in A2142, and a radio galaxy located in the background of A2065. All these galaxy clusters are characterized by high temperatures. Results. We obtained detailed RM images at an angular resolution of 3 �� for most of the observed radio galaxies. The RM images are patchy and reveal fine substructures of a few kpc in size. Under the assumption that the radio galaxies themselves have no effect on the measured RMs, these structures indicate that the intracluster magnetic fields fluctuate down to such small scales. These new data are compared with RM information present in the literature for cooler galaxy clusters. For a fixed projected distance from the cluster center, clusters with higher temperature show a higher dispersion of the RM distributions (σRM), mostly because of the higher gas density in these clusters. Although the previously known relation between the clusters X-ray surface brightness (S X) at the radio galaxy location and σRM is confirmed, a possible connection between the σRM − S X relation and the cluster temperature, if present, is very weak. Therefore, in view of the current data, it is impossible to establish a strict link between the magnetic field strength and the gas temperature of the intracluster medium.

96 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used a set of high-resolution hydrodynamical simulations of clusters of galaxies to study the build-up of the intracluster light (ICL), an interesting and likely significant component of their total stellar mass.
Abstract: We use a set of high-resolution hydrodynamical simulations of clusters of galaxies to study the build-up of the intracluster light (ICL), an interesting and likely significant component of their total stellar mass. Our sample of groups and clusters includes AGN feedback and is of high enough resolution to accurately resolve galaxy populations down to the smallest galaxies that are expected to significantly contribute to the stellar mass budget. We describe and test four different methods to identify the ICL in simulations, thereby allowing us to assess the reliability of the measurements. For all of the methods, we consistently find a very significant ICL stellar fraction (~45%) which exceeds the values typically inferred from observations. However, we show that this result is robust with respect to numerical resolution and integration accuracy, remarkably insensitive to changes in the star formation model, and almost independent of halo mass. It is also almost invariant when black hole growth is included, even though AGN feedback successfully prevents excessive overcooling in clusters and leads to a drastically improved agreement of the simulated cluster galaxy population with observations. In particular, the luminosities of central galaxies and the ages of their stellar populations are much more realistic when including AGN. In the light of these findings, it appears challenging to construct a simulation model that simultaneously matches the cluster galaxy population and at the same time produces a low ICL component. We find that intracluster stars are preferentially stripped in a cluster's densest region from massive galaxies that fall into the cluster at z>1. Surprisingly, some of the intracluster stars also form in the intracluster medium inside cold gas clouds that are stripped out of infalling galaxies.

Journal ArticleDOI
TL;DR: In this article, the results from a constrained, cosmological magnetohydrodynamic simulation of the Local Universe were used to predict the radio halo and the γ-ray flux from the Coma cluster and compare it to current observations.
Abstract: We use the results from a constrained, cosmological magnetohydrodynamic simulation of the Local Universe to predict the radio halo and the γ-ray flux from the Coma cluster and compare it to current observations. The simulated magnetic field within the Coma cluster is the result of turbulent amplification of the magnetic field during the build-up of the cluster. The magnetic seed field originates from starburst driven, galactic outflows. The synchrotron emission is calculated assuming a hadronic model. We follow four approaches with different distributions for the cosmic ray proton population within galaxy clusters. The radial profile of the radio halo can only be reproduced with a radially increasing energy fraction within the cosmic ray proton population, reaching > 100 per cent of the thermal-energy content at ≈1 Mpc, for example the edge of the radio-emitting region. Additionally, the spectral steepening of the observed radio halo in Coma cannot be reproduced, even when accounting for the negative flux from the thermal Sunyaev-Zeldovich effect at high frequencies. Therefore, the hadronic models are disfavoured from the present analysis. The emission of γ-rays expected from our simulated Coma is still below the current observational limits (by a factor of ∼6) but would be detectable by FERMI observations in the near future.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the Faraday rotation measure (RM) of radio galaxies in hot galaxy clusters in order to establish a possible connection between the magnetic field strength and the gas temperature of the intracluster medium.
Abstract: The goal of this work is to investigate the Faraday rotation measure (RM) of radio galaxies in hot galaxy clusters in order to establish a possible connection between the magnetic field strength and the gas temperature of the intracluster medium. We performed Very Large Array observations at 3.6 cm and 6 cm of two radio galaxies located in A401 and Ophiuchus, a radio galaxy in A2142, and a radio galaxy located in the background of A2065. All these galaxy clusters are characterized by high temperatures. We obtained detailed RM images at an angular resolution of 3'' for most of the observed radio galaxies. The RM images are patchy and reveal fine substructures of a few kpc in size. Under the assumption that the radio galaxies themselves have no effect on the measured RMs, these structures indicate that the intracluster magnetic fields fluctuate down to such small scales. These new data are compared with RM information present in the literature for cooler galaxy clusters. For a fixed projected distance from the cluster center, clusters with higher temperature show a higher dispersion of the RM distributions (sigmaRM), mostly because of the higher gas density in these clusters. Although the previously known relation between the clusters X-ray surface brightness (Sx) at the radio galaxy location and sigmaRM is confirmed, a possible connection between the sigmaRM-Sx relation and the cluster temperature, if present, is very weak. Therefore, in view of the current data, it is impossible to establish a strict link between the magnetic field strength and the gas temperature of the intracluster medium.

Journal ArticleDOI
TL;DR: In this article, the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations was detected and an analytic derivation of the expected signal based on the extended Press-Schechter formalism was presented.
Abstract: The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, fNL, offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ~ 23% and ~ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively.

Journal ArticleDOI
TL;DR: In this article, the authors present self-consistent high-resolution simulations of NGC 4038/4039 (the "Antennae galaxies") including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code, in which magnetohydrodynamics are followed with the SPH method.
Abstract: We present self-consistent high-resolution simulations of NGC 4038/4039 (the "Antennae galaxies") including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code , in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10–9 to 10–4 G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of ≈10 μG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

Journal ArticleDOI
TL;DR: In this article, the authors use results from a constrained, cosmological magnetohydrodynamic (MHD) simulation of the Local Universe to predict radio haloes and their evolution for a volume-limited set of galaxy clusters and compare to current observations.
Abstract: We use results from a constrained, cosmological magnetohydrodynamic (MHD) simulation of the Local Universe to predict radio haloes and their evolution for a volume-limited set of galaxy clusters and compare to current observations. The simulated magnetic field inside the clusters is a result of turbulent amplification within them, with the magnetic seed originating from starburst-driven, galactic outflows. We evaluate three models, where we choose different normalizations for the cosmic ray proton population within clusters. Similar to our previous analysis of the Coma cluster, the radial profile and the morphological properties of observed radio haloes cannot be reproduced, even with a radially increasing energy fraction within the cosmic ray proton population. Scaling relations between X-ray luminosity and radio power can be reproduced by all models; however all models fail in the prediction of clusters with no radio emission. Also the evolutionary tracks of our largest clusters in all models fail to reproduce the observed bi-modality in radio luminosity. This provides additional evidence that the framework of hadronic, secondary models is disfavoured to reproduce the large-scale diffuse radio emission of galaxy clusters. We also provide predictions for the unavoidable emission of γ-rays from the hadronic models for the full cluster set. None of such secondary models is yet excluded by the observed limits in γ-ray emission, emphasizing that large-scale diffuse radio emission is a powerful tool to constrain the amount of cosmic ray protons in galaxy clusters.

Journal ArticleDOI
TL;DR: In this article, a constrained, cosmological MHD simulation of the Local Universe is used to predict radio halos and their evolution for a volume limited set of galaxy clusters and compare to current observations.
Abstract: We use results from a constrained, cosmological MHD simulation of the Local Universe to predict radio halos and their evolution for a volume limited set of galaxy clusters and compare to current observations. The simulated magnetic field inside the clusters is a result of turbulent amplification within them, with the magnetic seed originating from star-burst driven, galactic outflows. We evaluate three models, where we choose different normalizations for the Cosmic Ray proton population within clusters. Similar to our previous analysis of the Coma cluster (Donnert et al. 2010), the radial profile and the morphological properties of observed radio halos can not be reproduced, even with a radially increasing energy fraction within the cosmic ray proton population. Scaling relations between X-ray luminosity and radio power can be reproduced by all models, however all models fail in the prediction of clusters with no radio emission. Also the evolutionary tracks of our largest clusters in all models fail to reproduce the observed bi-modality in radio luminosity. This provides additional evidence that the framework of hadronic, secondary models is disfavored to reproduce the large scale diffuse radio emission of galaxy clusters. We also provide predictions for the unavoidable emission of $\gamma$-rays from the hadronic models for the full cluster set. None of such secondary models is yet excluded by the observed limits in $\gamma$-ray emission, emphasizing that large scale diffuse radio emission is a powerful tool to constrain the amount of cosmic ray protons in galaxy clusters.

Journal ArticleDOI
TL;DR: In this article, the Coma cluster magnetic field strength, its radial profile and power spectrum were constrained by comparing Faraday Rotation Measure (RM) images with numerical simulations of the magnetic field.
Abstract: The aim of the present work is to constrain the Coma cluster magnetic field strength, its radial profile and power spectrum by comparing Faraday Rotation Measure (RM) images with numerical simulations of the magnetic field. We have analyzed polarization data for seven radio sources in the Coma cluster field observed with the Very Large Array at 3.6, 6 and 20 cm, and derived Faraday Rotation Measures with kiloparsec scale resolution. Random three dimensional magnetic field models have been simulated for various values of the central intensity B_0 and radial power-law slope eta, where eta indicates how the field scales with respect to the gas density profile. We derive the central magnetic field strength, and radial profile values that best reproduce the RM observations. We find that the magnetic field power spectrum is well represented by a Kolmogorov power spectrum with minimum scale ~ 2 kpc and maximum scale ~ 34 kpc. The central magnetic field strength and radial slope are constrained to be in the range (B_0=3.9 microG; eta=0.4) and (B_0=5.4 microG; eta=0.7) within 1sigma. The best agreement between observations and simulations is achieved for B_0=4.7 microG; eta=0.5. Values of B_0>7 microG and 1.0 are incompatible with RM data at 99 % confidence level.

Journal ArticleDOI
TL;DR: In this paper, the impact of gas motions on the polarization of bright X-ray emission lines from the hot intercluster medium was studied. But the effect of gas velocities on the expected degree and direction of polarization was not investigated.
Abstract: We study the impact of gas motions on the polarization of bright X-ray emission lines from the hot intercluster medium. The polarization naturally arises from resonant scattering of emission lines owing to a quadrupole component in the radiation field produced by a centrally peaked gas density distribution. If differential gas motions are present, then a photon emitted in one region of the cluster will be scattered in another region only if their relative velocities are small enough and the Doppler shift of the photon energy does not exceed the linewidth. This affects both the degree and the direction of polarization. The changes in the polarization signal are in particular sensitive to the gas motions perpendicular to the line of sight. We calculate the expected degree of polarization for several patterns of gas motions, including a slow inflow expected in a simple cooling flow model and a fast outflow in an expanding spherical shock wave. In both cases, the effect of non-zero gas velocities is found to be minor. We also calculate the polarization signal for a set of clusters, taken from large-scale structure simulations and evaluate the impact of the gas bulk motions on the polarization signal. We argue that the expected degree of polarization is within reach of the next generation of space X-ray polarimeters.

Journal ArticleDOI
TL;DR: In this article, the influence of dark energy on structure formation, within five different cosmological models, was investigated, namely, a concordance CDM model, two models with dynamical dark energy, viewed as a quintessence scalar field (using a RP and a SUGRA potential form) and two extended quintessensemble models (EQp and EQn) where the quadratic field interacts non-minimally with gravity (scalar-tensor theories).
Abstract: We investigate the influence of dark energy on structure formation, within five different cosmological models, namely a concordance $\Lambda$CDM model, two models with dynamical dark energy, viewed as a quintessence scalar field (using a RP and a SUGRA potential form) and two extended quintessence models (EQp and EQn) where the quintessence scalar field interacts non-minimally with gravity (scalar-tensor theories). We adopted for all models the normalization of the matter power spectrum $\sigma_{8}$ to match the CMB data. In the models with dynamical dark energy and quintessence, we describe the equation of state with $w_0\approx-0.9$, still within the range allowed by observations. For each model, we have performed hydrodynamical simulations in a cosmological box of $(300 \ {\rm{Mpc}} \ h^{-1})^{3}$ including baryons and allowing for cooling and star formation. The contemporary presence of evolving dark energy and baryon physics allows us to investigate the interplay between the different background cosmology and the evolution of the luminous matter. Since cluster baryon fraction can be used to constrain other cosmological parameters such as $\Omega_{m}$, we also analyse how dark energy influences the baryon content of galaxy clusters. We find that, in models with dynamical dark energy, the evolving cosmological background leads to different star formation rates and different formation histories of galaxy clusters, but the baryon physics is not affected in a relevant way. We investigate several proxies of the cluster mass function based on X-ray observables like temperature, luminosity, $M_{gas}$, and $Y_{gas}$. We conclude that the X-ray temperature and $M_{gas}$ functions are better diagnostic to disentangle the growth of structures among different dark energy models. [Abridged]

Journal ArticleDOI
TL;DR: In this paper, high-resolution simulations of a multiple merger of three disk galaxies including the evolution of magnetic fields performed with the N-body/SPH code Gadget are presented.
Abstract: We present high resolution simulations of a multiple merger of three disk galaxies including the evolution of magnetic fields performed with the N-body/SPH code Gadget. For the first time, we embed the galaxies in a magnetized, low-density medium, thus modeling an ambient IGM. The simulations include radiative cooling and a model for star formation and supernova feedback. The progenitor disks have initial magnetic seed fields in the range of 10e-9 to 10e-6 G and the IGM has initial fields of 10e-12 to 10e-9 G. The simulations are compared to a run excluding magnetic fields. We show that the propagation of interaction-driven shocks depends significantly on the initial magnetic field strength. The shocks propagate faster in simulations with stronger initial field, suggesting that the shocks are supported by magnetic pressure. The Mach numbers of the shocks range from approximately M=1.5 for the non-magnetized case up to M=6 for the highest initial magnetization, resulting in higher temperatures of the shock heated IGM gas. The magnetic field in the system saturates rapidly after the mergers at ~ 10e-6 G within the galaxies and ~ 10e-8 G in the IGM independent of the initial value. These field strengths agree with observed values and correspond to the equipartition value of the magnetic pressure with the turbulent pressure in the system. We also present synthetic radio and polarization maps for different phases of the evolution showing that shocks driven by the interaction produce a high amount of polarized emission. These idealized simulations indicate that magnetic fields play an important role for the hydrodynamics of the IGM during galactic interactions. We also show that even weak seed fields are efficiently strengthened during multiple galactic mergers. This interaction driven amplification might have been a key process for the magnetization of the Universe.

Journal ArticleDOI
TL;DR: In this article, the distribution of galaxy clusters at different redshifts was analyzed using cosmological dark-matter only simulations starting from initial conditions with different levels of non-Gaussianity: f NL = 0, ± 100.
Abstract: Several inflationary models predict the possibility that the primordial perturbations of the density field may contain a degree of non-Gaussianity which would influence the subsequent evolution of cosmic structures at large scales. In order to study their impact, we use a set of three cosmological dark-matter-only simulations starting from initial conditions with different levels of non-Gaussianity: f NL = 0, ±100. More specifically, we focus on the distribution of galaxy clusters at different redshifts and, using suitable scaling relations, we determine their X-ray and Sunyaev―Zel'dovich signals. Our analysis allows us to estimate the differences in log N― log S and log N―log Y due to the different initial conditions and to predict the cluster counts at different redshifts expected for future surveys (eROSITA and SPT). We also use a second set of simulations assuming a different cosmological scenario to estimate how the dependence on f NL is degenerate with respect to other parameters. Our results indicate that the effects introduced by a realistic amount of primordial non-Gaussianity are small when compared to the ones connected with current uncertainties in cosmological parameters, particularly with σ 8 . However, if future surveys will be associated with optical follow-up campaigns to determine the cluster redshift, an analysis of the samples at z > 1 can provide significant constraints on f NL . In particular, we predict that the SPT cluster survey will be able to detect ∼1000 clusters at z > 1 for the Gaussian case, with a difference of 15-20 per cent associated with f NL = ±100.

Journal ArticleDOI
TL;DR: In this article, the authors extend previous studies of this apparent paradox using numerical simulations of two extreme merger cases, one is a high Mach number (above 2.5) satellite merger similar to the "bullet cluster" and the other a merger of nearly equal mass progenitors.
Abstract: Clusters of galaxies are known to be dynamically active systems, yet X-ray studies of the low redshift population exhibit tight scaling laws. In this work, we extend previous studies of this apparent paradox using numerical simulations of two extreme merger cases, one is a high Mach number (above 2.5) satellite merger similar to the "bullet cluster" and the other a merger of nearly equal mass progenitors. Creating X-ray images densely sampled in time, we construct TX, Mgas, and YX measures within R500 and compare to the calibrations of Kravtsov et al. (2006). We find that these extreme merger cases respect the scaling relations, for both intrinsic measures and for measures derived from appropriately masked, synthetic Chandra X-ray images. The masking procedure plays a critical role in the X-ray temperature calculation while it is irrelevant in the X-ray gas mass derivation. Mis-centering up to 100 kpc does not influence the result. The observationally determined radius R500 might conduce to systematic shifts in Mgas, and YX which increase the total mass scatter.

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the possibility to infer the magnetic field strength in filaments by measuring cross-correlation functions between Faraday rotation measures (RM) and the galaxy density field.
Abstract: Using cosmological magnetohydrodynamical (MHD) simulations of the magnetic field in galaxy clusters and filaments, we evaluate the possibility to infer the magnetic field strength in filaments by measuring cross-correlation functions between Faraday rotation measures (RM) and the galaxy density field. We also test the reliability of recent estimates considering the problem of data quality and Galactic foreground (GF) removal in current data sets. Besides the two self-consistent simulations of cosmological magnetic fields based on primordial seed fields and galactic outflows analysed here, we also explore a larger range of models scaling up the resulting magnetic fields of one of the simulations. We find that, if an unnormalized estimator for the cross-correlation functions and a GF removal procedure is used, the detectability of the cosmological signal is only possible for future instruments (e.g. SKA and ASKAP). However, mapping of the observed RM signal to the underlying magnetization of the Universe (both in space and time) is an extremely challenging task which is limited by the ambiguities of our model parameters, as well as to the weak response of the RM signal in low-density environments. Therefore, we conclude that current data cannot constrain the amplitude and distribution of magnetic fields within the large-scale structure and a detailed theoretical understanding of the build-up and distribution of magnetic fields within the Universe will be needed for the interpretation of future observations.

Journal ArticleDOI
TL;DR: In this article, a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical smoothed particle hydrogrodynamics (SPH) simulations and by a semi-analytic model of galaxy formation is presented.
Abstract: We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical smoothed particle hydrodynamics (SPH) simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. This simplified comparison is thus not meant to be compared with observational data, but is aimed at understanding the level of agreement, at the stripped-down level considered, between two techniques that are widely used to model galaxy formation in a cosmological framework and which present complementary advantages and disadvantages. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: (i) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; (ii) while all stars associated with the BCG were formed in its progenitors in the SAM used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; (iii) SPH satellites can lose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the SAM used in this paper; (iv) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is not included in the SAM used in this paper, as well as in most of the models discussed in the recent literature. Our results identify specific directions of improvements for our methods to study galaxy formation in a hierarchical universe.

Journal ArticleDOI
TL;DR: In this paper, an analysis of the velocity structure of the ICM for simulated cluster-size haloes, especially focusing on rotational patterns, has been performed, demonstrating them to be an intermittent phenomenon, strongly related to the internal dynamics of substructures.
Abstract: Gas motions in the hot intracluster medium of galaxy clusters have an important effect on the mass determination of the clusters through X-ray observations. The corresponding dynamical pressure has to be accounted for in addition to the hydrostatic pressure support to achieve a precise mass measurement. An analysis of the velocity structure of the ICM for simulated cluster-size haloes, especially focusing on rotational patterns, has been performed, demonstrating them to be an intermittent phenomenon, strongly related to the internal dynamics of substructures. We find that the expected build-up of rotation due to mass assembly gets easily destroyed by passages of gas-rich substructures close to the central region. Though, if a typical rotation pattern is established, the corresponding mass contribution is estimated to be up to ~17% of the total mass in the innermost region, and one has to account for it. Extending the analysis to a larger sample of simulated haloes we statistically observe that (i) the distribution of the rotational component of the gas velocity in the innermost region has typical values of ~200-300 km/s; (ii) except for few outliers, there is no monotonic increase of the rotational velocity with decreasing redshift, as we would expect from approaching a relaxed configuration. Therefore, the hypothesis that the build-up of rotation is strongly influenced by internal dynamics is confirmed, and minor events like gas-rich substructures passing close to the equatorial plane can easily destroy any ordered rotational pattern.

Journal ArticleDOI
01 May 2010
TL;DR: In this article, the authors present a high performance parallelized implementation of Splotch, their previously developed visual data exploration and discovery algorithm for large-scale astrophysical data sets coming from particle-based simulations.
Abstract: The scientific community is presently witnessing an unprecedented growth in the quality and quantity of data sets coming from simulations and real-world experiments. To access effectively and extract the scientific content of such large-scale data sets (often sizes are measured in hundreds or even millions of Gigabytes) appropriate tools are needed. Visual data exploration and discovery is a robust approach for rapidly and intuitively inspecting large-scale data sets, e.g. for identifying new features and patterns or isolating small regions of interest within which to apply time-consuming algorithms. This paper presents a high performance parallelized implementation of Splotch, our previously developed visual data exploration and discovery algorithm for large-scale astrophysical data sets coming from particle-based simulations. Splotch has been improved in order to exploit modern massively parallel architectures, e.g. multicore CPUs and CUDA-enabled GPUs. We present performance and scalability benchmarks on a number of test cases, demonstrating the ability of our high performance parallelized Splotch to handle efficiently large-scale data sets, such as the outputs of the Millennium II simulation, the largest cosmological simulation ever performed.

Journal ArticleDOI
TL;DR: In this article, the fluence of 1ES 0229+200 as seen by Fermi-LAT for different EGMF profiles using a Monte Carlo simulation for the cascade development was calculated.
Abstract: High energy photons from blazars can initiate electromagnetic pair cascades interacting with the extragalactic photon background. The charged component of such cascades is deflected and delayed by extragalactic magnetic fields (EGMF), reducing thereby the observed point-like flux and leading potentially to multi degree images in the GeV energy range. We calculate the fluence of 1ES 0229+200 as seen by Fermi-LAT for different EGMF profiles using a Monte Carlo simulation for the cascade development. The non-observation of 1ES 0229+200 by Fermi-LAT suggests that the EGMF fills at least 60% of space with fields stronger than {\cal O}(10^{-16}-10^{-15})G for life times of TeV activity of {\cal O}(10^2-10^4)yr. Thus the (non-) observation of GeV extensions around TeV blazars probes the EGMF in voids and puts strong constraints on the origin of EGMFs: Either EGMFs were generated in a space filling manner (e.g. primordially) or EGMFs produced locally (e.g. by galaxies) have to be efficiently transported to fill a significant volume fraction, as e.g. by galactic outflows.

Journal ArticleDOI
TL;DR: In this article, the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations was detected and an analytic derivation of the expected signal based on the extended Press-Schechter formalism was presented.
Abstract: The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f_NL, offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ~23% and ~48% for galaxies at z=1 selected by stellar mass and star formation rate, respectively.

Journal ArticleDOI
TL;DR: In this article, a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical SPH simulations and by a semi-analytic model (SAM) of galaxy formation is presented.
Abstract: We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical SPH simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: a) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; b) while all stars associated with the BCG were formed in its progenitors in the semi-analytic model used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; c) SPH satellites can loose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the semi-analytic model used in this study; d) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is not included in the semi-analytic model used in our study, as well as in most of the models discussed in the recent literature.