scispace - formally typeset
Search or ask a question

Showing papers by "Laura J. Scott published in 2012"


Journal ArticleDOI
Nichole D. Palmer1, Caitrin W. McDonough1, Pamela J. Hicks1, B H Roh1  +381 moreInstitutions (6)
04 Jan 2012-PLOS ONE
TL;DR: It is suggested that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
Abstract: African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.

1,957 citations


Journal ArticleDOI
TL;DR: This article conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent, and identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association.
Abstract: To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis.

1,899 citations


Journal ArticleDOI
Zari Dastani1, Hivert M-F.2, Hivert M-F.3, N J Timpson4  +615 moreInstitutions (128)
TL;DR: A meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease identifies novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Abstract: Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

456 citations


Journal ArticleDOI
John R. B. Perry1, John R. B. Perry2, John R. B. Perry3, Benjamin F. Voight4, Loic Yengo5, Najaf Amin6, Josée Dupuis7, Josée Dupuis8, Martha Ganser9, Harald Grallert, Pau Navarro10, Man Li11, Lu Qi12, Valgerdur Steinthorsdottir13, Robert A. Scott14, Peter Almgren15, Dan E. Arking11, Yurii S. Aulchenko6, Beverley Balkau, Rafn Benediktsson, Richard N. Bergman16, Eric Boerwinkle17, Lori L. Bonnycastle7, Noël P. Burtt4, Harry Campbell10, Guillaume Charpentier, Francis S. Collins7, Christian Gieger, Todd Green4, Samy Hadjadj, Andrew T. Hattersley1, Christian Herder18, Albert Hofman6, Andrew D. Johnson7, Anna Köttgen19, Anna Köttgen11, Peter Kraft12, Yann Labrune5, Claudia Langenberg14, Alisa K. Manning8, Karen L. Mohlke20, Andrew P. Morris2, Ben A. Oostra6, James S. Pankow21, Ann-Kristin Petersen, Peter P. Pramstaller22, Inga Prokopenko2, Wolfgang Rathmann18, W Rayner2, Michael Roden18, Igor Rudan10, Denis Rybin8, Laura J. Scott9, Gunnar Sigurdsson, Robert Sladek23, Gudmar Thorleifsson13, Unnur Thorsteinsdottir24, Unnur Thorsteinsdottir13, Jaakko Tuomilehto, André G. Uitterlinden6, Sidonie Vivequin5, Michael N. Weedon1, Alan F. Wright10, Frank B. Hu12, Thomas Illig25, Linda Kao11, James B. Meigs12, James F. Wilson10, Kari Stefansson24, Kari Stefansson13, Cornelia M. van Duijn6, David Altschuler4, Andrew D. Morris26, Michael Boehnke9, Mark I. McCarthy2, Philippe Froguel5, Philippe Froguel27, Colin N. A. Palmer26, Nicholas J. Wareham14, Leif Groop15, Timothy M. Frayling1, Stéphane Cauchi5 
TL;DR: Evidence is provided that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2abetes.
Abstract: Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI = 30 Kg/m(2)). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI = 30 kg/m(2)), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4610 29, OR = 1.13 [95% CI 1.09-1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00-1.06]). A variant in HMG20A-previously identified in South Asians but not Europeans-was associated with type 2 diabetes in obese cases (P = 1.3 x 10(-8), OR= 1.11 [95% CI 1.07-1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02-1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10-1.17], P = 3.2 x 10(-14). This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05-1.08], P = 2.2 x 10(-16). This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.

265 citations


Journal ArticleDOI
TL;DR: Methods and technologies used to identify novel variants and loci contributing to trait variation and disease risk and how they will continue to expand understanding of the genetic risk factors and underlying biology of diabetes are reviewed.
Abstract: A new generation of genetic studies of diabetes is underway. Following from initial genome-wide association (GWA) studies, more recent approaches have used genotyping arrays of more densely spaced markers, imputation of ungenotyped variants based on improved reference haplotype panels, and sequencing of protein-coding exomes and whole genomes. Experimental and statistical advances make possible the identification of novel variants and loci contributing to trait variation and disease risk. Integration of sequence variants with functional analysis is critical to interpreting the consequences of identified variants. We briefly review these methods and technologies and describe how they will continue to expand our understanding of the genetic risk factors and underlying biology of diabetes.

14 citations


Journal ArticleDOI
TL;DR: It is found that significant evidence for case‐control association combined with no or moderate evidence for affected sibling pair linkage can define a lower bound for the plausible causal risk allele frequency (RAFC).
Abstract: When planning resequencing studies for complex diseases, previous association and linkage studies can constrain the range of plausible genetic models for a given locus. Here, we explore the combinations of causal risk allele frequency (RAFC) and genotype relative risk (GRRC) consistent with no or limited evidence for affected sibling pair (ASP) linkage and strong evidence for case-control association. We find that significant evidence for case-control association combined with no or moderate evidence for ASP linkage can define a lower bound for the plausible RAFC. Using data from large type 2 diabetes (T2D) linkage and genome-wide association study meta-analyses, we find that under reasonable model assumptions, 23 of 36 autosomal T2D risk loci are unlikely to be due to causal variants with combined RAFC < 0.005, and four of the 23 are unlikely to be due to causal variants with combined RAFC < 0.05. Genet. Epidemiol. 00:1‐9, 2012. C � 2012 Wiley Periodicals, Inc.

8 citations


01 Jan 2012
TL;DR: A meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, finds a long tail of additional common variant loci explaining much of the variation in susceptibility to type 2 diabetes.

3 citations