scispace - formally typeset
Search or ask a question

Showing papers by "M. Elizabeth Halloran published in 2014"


Journal ArticleDOI
TL;DR: A 3-month ensemble forecast is generated that provides quantitative estimates of the local transmission of Ebola virus disease in West Africa and the probability of international spread if the containment measures are not successful at curtailing the outbreak.
Abstract: Background: The 2014 West African Ebola Outbreak is so far the largest and deadliest recorded in history. The affected countries, Sierra Leone, Guinea, Liberia, and Nigeria, have been struggling to contain and to mitigate the outbreak. The ongoing rise in confirmed and suspected cases, 2615 as of 20 August 2014, is considered to increase the risk of international dissemination, especially because the epidemic is now affecting cities with major commercial airports. Method: We use the Global Epidemic and Mobility Model to generate stochastic, individual based simulations of epidemic spread worldwide, yielding, among other measures, the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. The mobility model integrates daily airline passenger traffic worldwide and the disease model includes the community, hospital, and burial transmission dynamic. We use a multimodel inference approach calibrated on data from 6 July to the date of 9 August 2014. The estimates obtained were used to generate a 3-month ensemble forecast that provides quantitative estimates of the local transmission of Ebola virus disease in West Africa and the probability of international spread if the containment measures are not successful at curtailing the outbreak. Results: We model the short-term growth rate of the disease in the affected West African countries and estimate the basic reproductive number to be in the range 1.5 "� 2.0 (interval at the 1/10 relative likelihood). We simulated the international spreading of the outbreak and provide the estimate for the probability of Ebola virus disease case importation in countries across the world. Results indicate that the short-term (3 and 6 weeks) probability of international spread outside the African region is small, but not negligible. The extension of the outbreak is more likely occurring in African countries, increasing the risk of international dissemination on a longer time scale. Abstract Background: The 2014 West African Ebola Outbreak is so far the largest and deadliest recorded in history. The affected countries, Sierra Leone, Guinea, Liberia, and Nigeria, have been struggling to contain and to mitigate the outbreak. The ongoing rise in confirmed and suspected cases, 2615 as of 20 August 2014, is considered to increase the risk of international dissemination, especially because the epidemic is now affecting cities with major commercial airports. Method: We use the Global Epidemic and Mobility Model to generate stochastic, individual based simulations of epidemic spread worldwide, yielding, among other measures, the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. The mobility model integrates daily airline passenger traffic worldwide and the disease model includes the community, hospital, and burial transmission dynamic. We use a multimodel inference approach calibrated on data from 6 July to the date of 9 August 2014. The estimates obtained were used to generate a 3-month ensemble forecast that provides quantitative estimates of the local transmission of Ebola virus disease in West Africa and the probability of international spread if the containment measures are not successful at curtailing the outbreak. Results: We model the short-term growth rate of the disease in the affected West African countries and estimate the basic reproductive number to be in the range 1.5 "� 2.0 (interval at the 1/10 relative likelihood). We simulated the international spreading of the outbreak and provide the estimate for the probability of Ebola virus disease case importation in countries across the world. Results indicate that the short-term (3 and 6 weeks) probability of international spread outside the African region is small, but not negligible. The extension of the outbreak is more likely occurring in African countries, increasing the risk of international dissemination on a longer time scale. Abstract Background: The 2014 West African Ebola Outbreak is so far the largest and deadliest recorded in history. The affected countries, Sierra Leone, Guinea, Liberia, and Nigeria, have been struggling to contain and to mitigate the outbreak. The ongoing rise in confirmed and suspected cases, 2615 as of 20 August 2014, is considered to increase the risk of international dissemination, especially because the epidemic is now affecting cities with major commercial airports. Method: We use the Global Epidemic and Mobility Model to generate stochastic, individual based simulations of epidemic spread worldwide, yielding, among other measures, the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. The mobility model integrates daily airline passenger traffic worldwide and the disease model includes the community, hospital, and burial transmission dynamic. We use a multimodel inference approach calibrated on data from 6 July to the date of 9 August 2014. The estimates obtained were used to generate a 3-month ensemble forecast that provides quantitative estimates of the local transmission of Ebola virus disease in West Africa and the probability of international spread if the containment measures are not successful at curtailing the outbreak. Results: We model the short-term growth rate of the disease in the affected West African countries and estimate the basic reproductive number to be in the range 1.5 "� 2.0 (interval at the 1/10 relative likelihood). We simulated the international spreading of the outbreak and provide the estimate for the probability of Ebola virus disease case importation in countries across the world. Results indicate that the short-term (3 and 6 weeks) probability of international spread outside the African region is small, but not negligible. The extension of the outbreak is more likely occurring in African countries, increasing the risk of international dissemination on a longer time scale.

342 citations


Journal ArticleDOI
TL;DR: Observational studies of local conditions have been incomplete and limited by the urgent need to direct resources to patient care in the Ebola epidemic.
Abstract: The 2014 outbreak of Ebola in West Africa is unprecedented in its size and geographic range, and demands swift, effective action from the international community Understanding the dynamics and spread of Ebola is critical for directing interventions and extinguishing the epidemic; however, observational studies of local conditions have been incomplete and limited by the urgent need to direct resources to patient care

101 citations


Journal ArticleDOI
TL;DR: Simulation study results demonstrate the IPW estimators can yield unbiased estimates of the direct, indirect, total, and overall effects of vaccination when there is interference provided the untestable no unmeasured confounders assumption holds and the group‐level propensity score model is correctly specified.
Abstract: Interference occurs when the treatment of one person affects the outcome of another. For example, in infectious diseases, whether one individual is vaccinated may affect whether another individual becomes infected or develops disease. Quantifying such indirect (or spillover) effects of vaccination could have important public health or policy implications. In this article we use recently developed inverse-probability weighted (IPW) estimators of treatment effects in the presence of interference to analyze an individually-randomized, placebo-controlled trial of cholera vaccination that targeted 121,982 individuals in Matlab, Bangladesh. Because these IPW estimators have not been employed previously, a simulation study was also conducted to assess the empirical behavior of the estimators in settings similar to the cholera vaccine trial. Simulation study results demonstrate the IPW estimators can yield unbiased estimates of the direct, indirect, total, and overall effects of vaccination when there is interference provided the untestable no unmeasured confounders assumption holds and the group-level propensity score model is correctly specified. Application of the IPW estimators to the cholera vaccine trial indicates the presence of interference. For example, the IPW estimates suggest on average 5.29 fewer cases of cholera per 1000 person-years (95% confidence interval 2.61, 7.96) will occur among unvaccinated individuals within neighborhoods with 60% vaccine coverage compared to neighborhoods with 32% coverage. Our analysis also demonstrates how not accounting for interference can render misleading conclusions about the public health utility of vaccination.

78 citations


Journal ArticleDOI
TL;DR: Several sensitivity analysis techniques for the infectiousness effect are described which, in a vaccine trial, captures the effect of the vaccine of one person on protecting a second person from infection even if the first is infected.
Abstract: Causal inference with interference is a rapidly growing area. The literature has begun to relax the �no-interference� assumption that the treatment received by one individual does not affect the outcomes of other individuals. In this paper we briefly review the literature on causal inference in the presence of interference when treatments have been randomized. We then consider settings in which causal effects in the presence of interference are not identified, either because randomization alone does not suffice for identification or because treatment is not randomized and there may be unmeasured confounders of the treatment�outcome relationship. We develop sensitivity analysis techniques for these settings. We describe several sensitivity analysis techniques for the infectiousness effect which, in a vaccine trial, captures the effect of the vaccine of one person on protecting a second person from infection even if the first is infected. We also develop two sensitivity analysis techniques for causal effects under interference in the presence of unmeasured confounding which generalize analogous techniques when interference is absent. These two techniques for unmeasured confounding are compared and contrasted.

54 citations


Journal ArticleDOI
24 Oct 2014-Science
TL;DR: The current West African Ebola outbreak is taking place in a region where mobility has changed considerably in recent years, and understanding human movement and mobility is important for characterizing, forecasting, and controlling the spatial and temporal spread of infectious diseases.
Abstract: Understanding human movement and mobility is important for characterizing, forecasting, and controlling the spatial and temporal spread of infectious diseases. Unfortunately, the current West African Ebola outbreak is taking place in a region where mobility has changed considerably in recent years.

47 citations


Journal ArticleDOI
TL;DR: Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting and is provided the first estimate of the transmissibility of endemic cholERA within prospectively-followed members of households.
Abstract: Background Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces) to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures.

46 citations


Journal ArticleDOI
09 Dec 2014-PLOS ONE
TL;DR: The effectiveness of a school-located SLIV program in reducing the community risk of influenza and influenza-like illness (ILI) associated emergency care visits is explored.
Abstract: Background School-located influenza vaccination (SLIV) programs can substantially enhance the sub-optimal coverage achieved under existing delivery strategies. Randomized SLIV trials have shown these programs reduce laboratory-confirmed influenza among both vaccinated and unvaccinated children. This work explores the effectiveness of a SLIV program in reducing the community risk of influenza and influenza-like illness (ILI) associated emergency care visits. Methods For the 2011/12 and 2012/13 influenza seasons, we estimated age-group specific attack rates (AR) for ILI from routine surveillance and census data. Age-group specific SLIV program effectiveness was estimated as one minus the AR ratio for Alachua County versus two comparison regions: the 12 county region surrounding Alachua County, and all non-Alachua counties in Florida. Results Vaccination of ∼50% of 5–17 year-olds in Alachua reduced their risk of ILI-associated visits, compared to the rest of Florida, by 79% (95% confidence interval: 70, 85) in 2011/12 and 71% (63, 77) in 2012/13. The greatest indirect effectiveness was observed among 0–4 year-olds, reducing AR by 89% (84, 93) in 2011/12 and 84% (79, 88) in 2012/13. Among all non-school age residents, the estimated indirect effectiveness was 60% (54, 65) and 36% (31, 41) for 2011/12 and 2012/13. The overall effectiveness among all age-groups was 65% (61, 70) and 46% (42, 50) for 2011/12 and 2012/13. Conclusion Wider implementation of SLIV programs can significantly reduce the influenza-associated public health burden in communities.

26 citations


Journal ArticleDOI
TL;DR: It is concluded that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns, although vaccinating only children is unlikely to control endemic Cholera in Bangladesh.
Abstract: Background Killed, oral cholera vaccines have proven safe and effective, and several large-scale mass cholera vaccination efforts have demonstrated the feasibility of widespread deployment. This study uses a mathematical model of cholera transmission in Bangladesh to examine the effectiveness of potential vaccination strategies. Methods & Findings We developed an age-structured mathematical model of cholera transmission and calibrated it to reproduce the dynamics of cholera in Matlab, Bangladesh. We used the model to predict the effectiveness of different cholera vaccination strategies over a period of 20 years. We explored vaccination programs that targeted one of three increasingly focused age groups (the entire vaccine-eligible population of age one year and older, children of ages 1 to 14 years, or preschoolers of ages 1 to 4 years) and that could occur either as campaigns recurring every five years or as continuous ongoing vaccination efforts. Our modeling results suggest that vaccinating 70% of the population would avert 90% of cholera cases in the first year but that campaign and continuous vaccination strategies differ in effectiveness over 20 years. Maintaining 70% coverage of the population would be sufficient to prevent sustained transmission of endemic cholera in Matlab, while vaccinating periodically every five years is less effective. Selectively vaccinating children 1–14 years old would prevent the most cholera cases per vaccine administered in both campaign and continuous strategies. Conclusions We conclude that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns. Vaccinating children averts more cases per dose than vaccinating all age groups, although vaccinating only children is unlikely to control endemic cholera in Bangladesh. Careful consideration must be made before generalizing these results to other regions.

25 citations


Journal ArticleDOI
12 Sep 2014-Science
TL;DR: Infectious diseases and vaccine- or drug-based interventions can be loosely categorized by the degree to which the infectious disease and the intervention are well established.
Abstract: Planning, implementing, and evaluating interventions against infectious diseases depend on the nature of the infectious disease; the availability of intervention measures; and logistical, economic, and political constraints. Infectious diseases and vaccine- or drug-based interventions can be loosely categorized by the degree to which the infectious disease and the intervention are well established. Pertussis, polio, and measles are three examples of long-known infectious diseases for which global vaccination has dramatically reduced the public health burden. Pertussis vaccination was introduced in the 1940s, polio vaccination in the 1950s, and measles vaccination in the 1960s, nearly eliminating these diseases in many places.

15 citations


Journal ArticleDOI
TL;DR: This work considers time‐to‐event data where individuals can experience two or more types of events that are not distinguishable from one another without further confirmation, and proposes two novel methods to estimate covariate effects in this survival setting, and subsequently vaccine efficacy.
Abstract: Here we consider time-to-event data where individuals can experience two or more types of events that are not distinguishable from one another without further confirmation, perhaps by laboratory test. The event type of primary interest can occur only once. The other types of events can recur. If the type of a portion of the events is identified, this forms a validation set. However, even if a random sample of events are tested, confirmations can be missing nonmonotonically, creating uncertainty about whether an individual is still at risk for the event of interest. For example, in a study to estimate e cacy of an influenza vaccine, an individual may experience a sequence of symptomatic respiratory illnesses caused by various pathogens over the season. Often only a limited number of these episodes are confirmed in the laboratory to be influenza-related or not. We propose two novel methods to estimate covariate e ects in this survival setting, and subsequently vaccine e cacy. The first is a pathway Expectation-Maximization (EM) algorithm that takes into account all pathways of event types in an individual compatible with that individual’s test outcomes. The pathway EM iteratively estimates baseline hazards that are used to weight possible event types. The second method is a non-iterative pathway piecewise validation method that does not estimate the baseline hazards. These methods are compared with a previous simpler method. Simulation studies suggest mean squared error is lower in the e cacy estimates when the baseline hazards are estimated, especially at higher hazard rates. We use the pathway EM-algorithm to reevaluate the e cacy of a trivalent live-attenuated influenza vaccine during the 2003-2004 influenza season in Temple-Belton, Texas, and compare our results with a previously published analysis.

4 citations


OtherDOI
29 Sep 2014
TL;DR: The secondary attack rate is defined as the probability that infection occurs among susceptible persons within a reasonable incubation period following known contact with an infectious person or an infectious source.
Abstract: The secondary attack rate is defined as the probability that infection occurs among susceptible persons within a reasonable incubation period following known contact with an infectious person or an infectious source. It is a key epidemiologic parameter in infectious diseases that are transmitted by contact. It can be estimated using a variety of epidemiologic study designs, models, and methods of estimation. Inference needs to take into account the correlation of susceptibles exposed to the same infectious source. Keywords: incubation period; study design; vaccine efficacy; household secondary attack rate