Institution
Santa Fe Institute
Nonprofit•Santa Fe, New Mexico, United States•
About: Santa Fe Institute is a(n) nonprofit organization based out in Santa Fe, New Mexico, United States. It is known for research contribution in the topic(s): Population & Fitness landscape. The organization has 558 authors who have published 4558 publication(s) receiving 396015 citation(s). The organization is also known as: SFI.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: This article proposes a method for detecting communities, built around the idea of using centrality indices to find community boundaries, and tests it on computer-generated and real-world graphs whose community structure is already known and finds that the method detects this known structure with high sensitivity and reliability.
Abstract: A number of recent studies have focused on the statistical properties of networked systems such as social networks and the Worldwide Web. Researchers have concentrated particularly on a few properties that seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this article, we highlight another property that is found in many networks, the property of community structure, in which network nodes are joined together in tightly knit groups, between which there are only looser connections. We propose a method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer-generated and real-world graphs whose community structure is already known and find that the method detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well known—a collaboration network and a food web—and find that it detects significant and informative community divisions in both cases.
12,930 citations
[...]
TL;DR: It is demonstrated that the algorithms proposed are highly effective at discovering community structure in both computer-generated and real-world network data, and can be used to shed light on the sometimes dauntingly complex structure of networked systems.
Abstract: We propose and study a set of algorithms for discovering community structure in networks-natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using any one of a number of possible "betweenness" measures, and second, these measures are, crucially, recalculated after each removal. We also propose a measure for the strength of the community structure found by our algorithms, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering community structure in both computer-generated and real-world network data, and show how they can be used to shed light on the sometimes dauntingly complex structure of networked systems.
11,600 citations
Book•
[...]
TL;DR: An Introduction to Genetic Algorithms focuses in depth on a small set of important and interesting topics -- particularly in machine learning, scientific modeling, and artificial life -- and reviews a broad span of research, including the work of Mitchell and her colleagues.
Abstract: From the Publisher:
"This is the best general book on Genetic Algorithms written to date. It covers background, history, and motivation; it selects important, informative examples of applications and discusses the use of Genetic Algorithms in scientific models; and it gives a good account of the status of the theory of Genetic Algorithms. Best of all the book presents its material in clear, straightforward, felicitous prose, accessible to anyone with a college-level scientific background. If you want a broad, solid understanding of Genetic Algorithms -- where they came from, what's being done with them, and where they are going -- this is the book.
-- John H. Holland, Professor, Computer Science and Engineering, and Professor of Psychology, The University of Michigan; External Professor, the Santa Fe Institute.
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics -- particularly in machine learning, scientific modeling, and artificial life -- and reviews a broad span of research, including the work of Mitchell and her colleagues.
The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines.
An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text.
The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
9,645 citations
[...]
TL;DR: This work proposes a principled statistical framework for discerning and quantifying power-law behavior in empirical data by combining maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and likelihood ratios.
Abstract: Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena. Unfortunately, the detection and characterization of power laws is complicated by the large fluctuations that occur in the tail of the distribution—the part of the distribution representing large but rare events—and by the difficulty of identifying the range over which power-law behavior holds. Commonly used methods for analyzing power-law data, such as least-squares fitting, can produce substantially inaccurate estimates of parameters for power-law distributions, and even in cases where such methods return accurate answers they are still unsatisfactory because they give no indication of whether the data obey a power law at all. Here we present a principled statistical framework for discerning and quantifying power-law behavior in empirical data. Our approach combines maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and likelihood ratios. We evaluate the effectiveness of the approach with tests on synthetic data and give critical comparisons to previous approaches. We also apply the proposed methods to twenty-four real-world data sets from a range of different disciplines, each of which has been conjectured to follow a power-law distribution. In some cases we find these conjectures to be consistent with the data, while in others the power law is ruled out.
8,065 citations
[...]
TL;DR: This chapter discusses Ant Foraging Behavior, Combinatorial Optimization, and Routing in Communications Networks, and its application to Data Analysis and Graph Partitioning.
Abstract: 1. Introduction 2. Ant Foraging Behavior, Combinatorial Optimization, and Routing in Communications Networks 3. Division of Labor and Task Allocation 4. Cemetery Organization, Brood Sorting, Data Analysis, and Graph Partitioning 5. Self-Organization and Templates: Application to Data Analysis and Graph Partitioning 6. Nest Building and Self-Assembling 7. Cooperative Transport by Insects and Robots 8. Epilogue
5,634 citations
Authors
Showing all 558 results
Name | H-index | Papers | Citations |
---|---|---|---|
James Hone | 127 | 637 | 108193 |
James H. Brown | 125 | 423 | 72040 |
Alan S. Perelson | 118 | 632 | 66767 |
Mark Newman | 117 | 348 | 168598 |
Bette T. Korber | 117 | 392 | 49526 |
Marten Scheffer | 111 | 350 | 73789 |
Peter F. Stadler | 103 | 901 | 56813 |
Sanjay Jain | 103 | 881 | 46880 |
Henrik Jeldtoft Jensen | 102 | 1286 | 48138 |
Dirk Helbing | 101 | 642 | 56810 |
Oliver G. Pybus | 100 | 447 | 45313 |
Andrew P. Dobson | 98 | 322 | 44211 |
Carel P. van Schaik | 94 | 329 | 26908 |
Seth Lloyd | 92 | 490 | 50159 |
Andrew W. Lo | 85 | 378 | 51440 |